
COVER

Rubicon
Reference Manual
For version 4.0.1.2

Disclaimer

HREF TOOLS CORP. ("HREF") DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, IN-
CLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE AND NON INFRINGEMENT. IN NO EVENT SHALL
HREF BE LIABLE FOR ANY LOSS OR DAMAGE OF ANY KIND, INCLUDING BUT NOT LIMIT-
ED TO INCIDENTAL, INDIRECT, CONSEQUENTIAL OR SPECIAL DAMAGES, ARISING OUT
OF THIS AGREEMENT OF THE DELIVERY, USE, SUPPORT OR OPERATION OF THE SOFT-
WARE. AMONG OTHER THINGS HREF WILL NOT BE LIABLE FOR ANY LOSS OR DAMAGE
INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF GOODWILL, WORK STOP-
PAGE, COMPUTER FAILURE OR MALFUNCTION, OR ANY AND ALL OTHER COMMERCIAL
DAMAGES OR LOSSES. IN NO EVENT WILL HREF BE LIABLE FOR ANY DAMAGES IN EXCESS
OF HREF's LIST PRICE FOR A LICENSE TO THE PROGRAM EVEN IF HREF SHALL HAVE BEEN
INFORMED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER
PARTY. THIS LIMITATION OF LIABILITY SHALL NOT APPLY TO LIABILITY FOR DEATH OR
PERSONAL INJURY TO THE EXTENT APPLICABLE LAW PROHIBITS SUCH LIMITATION.
FURTHERMORE, SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES, SO THIS LIMITATION AND EXCLUSION MAY
NOT APPLY TO YOU.

Trademarks

Rubicon is a trademark of HREF Tools Corp. Delphi and C++ Builder are trademarks of Embarca-
dero Software.

Copyright

Both the Rubicon software and this manual are Copyright © 2009-2012 HREF Tools Corp. All
Rights Reserved Worldwide.

No part of this manual may be copied, photocopied, reproduced, translated, or reduced to any
electronic medium or machine readable form without prior written consent from HREF Tools
Corp. (“HREF”). The Rubicon software and this manual and all related rights in patents, copyrights
and trade secrets are protected by the copyright laws of the United States and international copy-
right treaties and shall at all times, and throughout the world, remain the property of HREF exclu-
sively. HREF reserves the exclusive copyright and all other rights, title and interest to distribute
Rubicon.

Credits

Rubicon versions 1 and 2 were programmed by Deven Hickingbotham at Tamarack Associates,
Palo Alta, California. Versions 3 and 4 were implemented by HREF Tools Corp. The text in this
manual pertaining to Rubicon 1 and 2 was written by D. Hickingbotham. This manual was typeset
by Ran Zhang.

Edition

15-Sep-2012 for Rubicon version 4.0.1.2

Buy Now!

Please pay for your Rubicon license. Start at http://www.href.com/rubicon

Fonts

This manual uses the Berkeley Book font from www.adobe.com for the main text, and Hadrianus
from Scriptorium for Rubicon.

http://href.com

http://www.href.com/rsu
http://www.adobe.com
http://href.com

iii

Rubicon Reference

Evaluation.. 7

Introduction ... 7
How Fast Is It? .. 8
Architecture .. 10
Searching .. 13
Ranking Search Results ... 15
Databases and Tables .. 16
Utility Programs.. 18
Setup Programs... 19
FREE Rubicon Editions and Their Limits 20
Rubicon End User License Agreement............................. 22
Glossary.. 26

Planning... 29

System Requirements.. 29
Common Questions .. 29
Paradox and dBase Options .. 30
Component Hierarcy .. 31

Installation... 35

Download ... 35
Unusual Features of the Installer..................................... 35
Running Setup .. 36
Extra Sample Database Files.. 39
Third Party Drivers ... 39
C++ Builder Package Installation..................................... 40
Package Naming Conventions... 41
Demo/Example Programs.. 42

Resource Definition ... 45

Hint for Evaluation and Lite Editions.............................. 45
Non-English Text; UTF-8; Unicode 45
Compiling Third-Party Data Bridges 46
Download Model Files (JPGs) ... 47
Download Borland Database Engine 47

CONTENTS

Rubicon Reference

iv

Rubicon Demos/Examples Use Shared Config,Yet... 48
dbExpress with Interbase 7, BlackFish 48

Operation ...49

How to Compile with Free Rubicon Components 49
How to Make .. 50
How to Update (Single User) .. 53
How to Update (Multi User) ... 55
Server Application .. 56
How to Search .. 58
How to Use a TClientDataSet .. 61
How to Search Multiple Tables 62
Working with Huge Tables ... 63
Indexing ... 65

Customization..69

Optional Compiler Directives ... 69
Example: Customizing Append and Make Components.. 71

Program Service ...77

Common Issues with Solutions....................................... 77
Troubleshooting ... 80
Human Assistance... 83

End Use ..85

Query Based Links .. 85
Using TrbServerUpdate and TrbSearch Simultaneously .. 85
Working with Link, Lookup, or Normalized Tables........ 86
Working with SQL Tables... 86
Web Applications ... 87
International Character Issues ... 88
Searching External Files .. 89
Converting Words .. 91
Searching Short and Omitted Words 92
Searching without a Text DataSet.................................... 92
Memory Issues .. 93

Evaluation 7

Rubicon Reference

EVALUATION

In this chapter, we consider information that will influence your selection, acquisition and
purchase of Rubicon; we advertise benefits and guide your choice.

Introduction

Rubicon has been designed to be easy to use by the end user, perform full text searches as
quickly as possible, and to be compatible with a wide range storage and retrieval options.

End users have grown accustomed to the easy-to-use search interfaces offered by internet
search sites. With Rubicon it is simple to offer this same style of interface whereby the user
simply has to type in words. The end user also has the option of using a more sophisti-
cated search using phrases, wildcards, applying And, Or, Not, Near, and Like logic, and/or
iteratively narrowing or widening the search. The search results are returned faster than a
conventional search regardless of field type or the location of the word or string in the field.

Search results are typically returned in under one tenth of a second, beating conventional
search strategies by more than a thousand fold. This speed allows the host system to run
more efficiently and also allows the end user more time to refine the search or explore other
search avenues.

Rubicon’s design allows it to work with more types of text. In many cases, the text being
searched is stored in database tables, and Rubicon is compatible with many leading data-
base engines.

From a developer’s standpoint, Rubicon encapsulates this robust search technology in a set
of native Delphi VCL components that build indexes, update indexes, and execute
searches. All the components are entirely written in Delphi and are compatible with all
versions of Delphi and C++ Builder.

Rubicon performs all searches by building a single Rubicon table that indexes all the words
in the source text and the locations of the words. This means that most Rubicon searches
never read the text – an important consideration in secure or resource constrained environ-
ments. Reads and writes against Rubicon index are further minimized by built-in caching
and compression technology. For a stand alone user's perspective, this speeds up the entire
search process. For network managers, this means that the search minimizes the use of
network bandwidth and both client and server CPU cycles. And by building Rubicon
indexes during off peak hours, the network manager can further free up precious peak
period network resources.

Rubicon Reference

8 Evaluation

How Fast Is It?

Rubicon is going to be significantly faster than conventional search strategies in all cases
except when very small amounts of text are being searched. The largest performance gains
are achieved against large amounts of text using complex searches. Appearing below are
some relative database performance benchmarks using local tables and memo fields:

Thus a Rubicon search averages 1,000 times faster than a SQL or QBE search against a 10k
record table, 2,000 times faster against a 25k record table, etc. As the number of records
increase, conventional search times will rise linearly. However, Rubicon searches are gener-
ally not affected by the number of records in the table being searched, and therefore the rel-
ative advantage of a Rubicon search will continue to grow as the number of records
increases.

The same kinds of performance gains can be expected when using remote tables. If the
remote table is on a file server, then along with the performance improvement comes sig-
nificantly lower network traffic. The same is often true for SQL tables since many queries
against a memo field require that the data be brought back to the client for processing.
And even if the query can be processed on the SQL server, Rubicon can process the search
more efficiently on the client with minimal network traffic.

Keep in mind that SQL memo field searches are usually case sensitive (the Upper function
does not convert memo fields in InterBase or BDE supported local tables). This means that
SQL searches will have to test for various case combinations in order to return the same
result set as Rubicon whose searches are not case sensitive.

What is new in Rubicon 4?

Rubicon 4 supports Unicode content within your databases. Rubicon 4 adds support for

Evaluation 9

Rubicon Reference

64-bit compilation.

Rubicon 4.01 includes significantly refactored demo applications for the full range of data-
base bridges.

Rubicon 4.01 includes a precompiled utility to handle the task of downloading and build-
ing sample databases.

Release notes are maintained at www.href.com/rbrelnotes.

What was new in Rubicon 3?

Rubicon 3 is the first edition to compile with a Unicode version of RAD Studio. The list of
supported database bridges is slightly different, but basically all functionality within the
Rubicon components is the same as before.

Customers upgrading from should find it extremely easy to recompile their Rubicon 2
projects in a current version of Delphi or C++Builder with Rubicon 3.

The Hunt4Packages utility is new.

The licensing scheme for Lite and Evaluation users is new.

What was new in Rubicon 2?

Rubicon has been almost completely overhauled in Version 2. The changes included:

•Abstracting all data access so that potentially any source of text could serve as input and
providing wide flexibility for storage of index information.
•Implemented a standard TDataSet based set of classes from which Borland and third party
datasets can be derived from. Rubicon includes drivers for several leading third party data-
base engines, so now Rubicon can read and write more formats than ever!
•Fully supports TQuery based drivers for much more efficient access to SQL databases.
•Match tables support TClientDataSet and third party database engine formats.
•Improved international character support.
•Significantly improved compression reduces the memory and disk footprint or lets you
process more text with the same amount of resources.
•Optimized several key routines by rewriting them in assembler or enhancing the algo-
rithms.
•Ability to store index information in the database record by using an encoded string field.
This significantly reduces the number of records containing blob data and results in faster
read and write times.
•Shared caching.
•Units reorganized to enhance readability and extensibility.

Rubicon Reference

10 Evaluation

Architecture

The design goal of the Rubicon search engine is to execute searches as fast as possible, min-
imize the use of system resources, and require little or no training of the end user. Rubicon
is able to quickly and efficiently perform searches by pre-building or compiling indexes of
all the words and their locations. Search results therefore become mostly a matter of
manipulating these indexes rather than actually reading the source text.

Text, Words and Locations

Rubicon reads text and creates location indexes for each unique word. The text being
indexed can be from any source. All that is needed is a driver to deliver the text to Rubicon
and a way to track where the text is located within the source.

The location, which must be a unique integer value, is not the precise position of the word
in the text, but rather the position of the word in a logical area of text. Typically, a location
is a primary or unique-secondary-key in a database table, a paragraph number, or a file
number.

Locations are presumed to be efficient. Efficient locations are ones that have few gaps
between locations. For instance, Text that consists of locations 10001, 10002, 10003, etc.,
is efficient whereas locations 10, 20, 30, etc. is inefficient.

The process of actually reading the text and saving the indexes is described in the next sec-
tion.

Terminology: throughout this documentation, Text refers to the text being indexed, while
Words (uppercase W) refers to both the words and their index of locations. Creating
Words refers to the process of creating storage for the Words.

TrbTextLink & TrbWordsLink

Rubicon 2 introduced the concept of links to the text being searched and the word indexes
being created. These links are VCL components that act as the interface between Rubicon
and the data storage.

The TrbTextLink and TrbWordsLink components are very similar to the virtual TDataSet
introduced in Delphi 3; their purpose is to define a base class from which descendents are
derived that actually implement the code that performs a storage task.

Terminology: TrbTextLink and TrbWordsLink will often be referred to as links or
drivers.

TrbMake, TrbUpdate & TrbSearch

The core of Rubicon is comprised of three components: TrbMake, TrbUpdate, and TrbSearch.
The first two components create and maintain the word indexes which are stored in Words. TrbMake reads

Evaluation 11

Rubicon Reference

the entire Text and builds a new Words. Subsequent changes to the Text may be processed through TrbUp-
date in order to keep Words current. The advantages and disadvantages of making or rebuilding versus
updating indexes are discussed in more detail in the next section.

Searches are performed with the TrbSearch component. Properties are available that control
what to SearchFor, the SearchLogic (slAnd, slOr, slNot, etc.), the SearchMode (to begin a new
search or to iteratively widen or narrow the scope of a search), and the RankMode (rmNone,
rmCount, rmPercent).

TrbSearch may be used by multiple simultaneous users to search the same Text and Words.
TrbMake is inherently a single user tool since it has to read the entire Text and create
Words. TrbUpdate is a single user or batch oriented component. Components designed for
multiple simultaneous updates in are discussed later.

TrbMake versus TrbUpdate

Appearing below is a table summarizing the relative merits of TrbMake versus TrbUpdate.

If the Text is updated in a batch mode (e.g. overnight updates), then TrbMake is probably
the appropriate choice if the number of changes is substantial.

If the Text is continually updated and the end user needs to be able to locate even the most
recent changes, then TrbUpdate must be used.

Keep in mind that careful Text design can minimize or eliminate the need for updating the
dictionary. For instance, a parts database may consist of descriptions, inventories, and
orders. While the inventories and orders portions of the database are going to be subject to
frequent updates, the parts descriptions are probably relatively static. Thus, if the dictio-

Table 1: TrbMake vs. TrbUpdate

TrbMake TrbUpdate

Purpose Processing large amount of
text

Process one update at a time

Memory Usage High
Low
Caching increases usage

Speed Per Location
Fast – memory based

Slow – disk based
Caching improves perfor-
mance

Speed To Update One
Location

Slow – must process all the
text

Fast – only processes one
update at a time

Speed To Update Many
Locations

May be faster than update
depending on the scope of
changes

May be faster than make
depending on the scope of
changes

Speed To Update All
Locations

Fastest Much slower

Location Restrictions None See driver specific limitations

Rubicon Reference

12 Evaluation

nary is created just on part descriptions and this is in a separate table, then the need to
dynamically update the dictionary is minimized.

Multiple User Updates

When multiple users are editing Text, TrbUpdate is not well suited to updating the Words. TrbUp-
date uses caching to improve its performance, but in a multi-user environment the data held in cache mem-
ory could become out of sync. In order to safely use TrbUpdate, caching would have to be disabled, and
this would drive up network usage as each word changed would require a read and a write of Words.

TrbClientUpdate and TrbServerUpdate provide a multi-user solution to updating the Words.
Instead of writing updates directly to Words, all the clients use TrbClientUpdate to write to
the NetDataSet. One application using TrbServerUpdate performs the updates to the Words
by processing the pending changes in the NetDataSet. Since only TrbServerUpdate needs to
cache records, it maintains a single coherent cache. This approach significantly reduces
network traffic.

Note: Rubicon includes a ready to run server application, Server.dpr.

Segmentation

When TrbMake indexes text, it creates the indexes in memory and only writes them to
Words when the indexing is complete. By using index compression and assuming a rea-
sonable number of unique words, this task can be performed on most PCs.

However, when indexing very large amounts of text, or when the number of unique words
if very high, the indexing task has to be broken down into smaller logical pieces or seg-
ments.

Segments are relative to locations. If the lowest location in Text is 10,000, and the highest
location is 50,000, then there are 40,001 possible locations (offsets 0..40,000). The range
of locations in this case is 40,000 (highest location minus lowest location). Without seg-
mentation, all 40,001 locations would be processed at once. With segmentation, the task
could be divided into pieces where each piece indexed N locations at a time.

Note: each location does not have to have text associated with it, although having a large
number of ‘empty’ locations is inefficient.

Segmentation is enabled by setting the SegmentSize property in TrbMake. When enabled,
the number of segments in Words will be the range of locations divided by the SegmentSize.
In the example above, this would be (40,000 / 16,000), or two full segments and one par-
tially full segment, for a total of three segments.

Segmentation increases the size of Words because a word can appear in more than one seg-
ment. It also results in slightly longer search times as more time has to be spent assembling
the segments.

These drawbacks are usually negligible when compared to the reduced time spent updat-
ing. Updating segmented Words means only a segment of the index needs updating, not

Evaluation 13

Rubicon Reference

the entire index. As a result, less memory is used and less data is read and written.

The update components can only work on and cache results from one segment at a time. If
only new locations are being added to the Text, this works very well as all the updates will
be processed in the last segment. However, when edits, deletes, or insertions are per-
formed that cross segment boundaries, the components are forced to flush the cache and
effectively restart in the new segment. If the pattern of usage results in many boundary
changes, performance will suffer.

There is no clear rule as to when segmentation should be used. The number of locations
being indexed, the efficiency of the locations, the number of unique words, the memory
available, and the pattern and type of updates being performed are all factors in this deci-
sion.

Searching

Rubicon supports several types of searches. The default behavior is to find the locations
which contain all the words entered in the search. For example, a search for ‘personal
computer’ would find all the locations that contain the words ‘personal’ and ‘computer’.

The TrbSearch property that determines the type of search is SearchLogic. The default value
for SearchLogic is slAnd. To search for locations containing ‘personal’ or ‘computer’, set
SearchLogic to slOr. To search for locations that contain neither ‘personal’ nor ‘computer’,
set SearchLogic to slNot.

Searches are not case sensitive. Words are converted to uppercase using the TrbEngine
UpperCase procedure.

Note: Rubicon uses an UpperCase procedure which differs from the SysUtils.UpperCase
function.

Like Searches

Like searches find words that match or nearly match those words entered in the query. The
default matching algorithm used is a slightly modified SoundEx routine. This algorithm
may be replaced with a custom algorithm. To perform a like search, set the TrbSearch
SearchLogic property to slLike.

Changing the Scope of a Search

After an initial search is performed, a user may wish to broaden or narrow the scope of a
search. To control the scope of a search, set the TrbSearch SearchMode property to smSearch
(default), smWiden, or smNarrow.

Rubicon Reference

14 Evaluation

Wildcard Searches

Rubicon supports wildcard searches in all operations. Using a SearchLogic of slAnd, a
search for ‘person* comput*’ would find locations that contain an instance of both ‘per-
son*’ and ‘comput*’. To determine which words were matched, use the MatchingWords
method.

Proximity Searches

Searching for phrases or searching for one word near another word is a proximity search.
In order to keep the size of the word indexes to a minimum, Rubicon does not store prox-
imity information. As a result, when a proximity search is performed, Rubicon first nar-
rows the list of possible locations using an slAnd search, and then reads the text of the
eligible locations to determine whether they meet the search criteria. To use a proximity
search, set the TrbSearch SearchLogic property to slPhrase or slNear. Whether two words are
near one another is determined by the TrbSearch NearWord property.

Expression Evaluation

Rubicon supports expression evaluation in searches by setting the SearchLogic property to
slExpression. Using slExpression, searches may take the form of:

windows

like windows

windows and driver and not video

windows near driver or "sound card"

(window* and driver) or (sound and card?)

slExpression allows the use of these familiar operators that are evaluated in the following
precedence (highest appear first)

like, near

not

and, or

The syntax for these operators is

like <string>

<string> near <string>

not <expression>

<expression> or <expression>

<expression> and <expression>

where

<string> is a string with or without a wildcard (e.g. windows, window*)

<expression> is a <string>, another operator, or parentheses enclosing an
expression

Evaluation 15

Rubicon Reference

Appearing below are some common mistakes:

Other common errors include not matching quotes (which may be paired single or double
quotes) or parenthesis.When there is a syntax error, ErrorPos contains the approximate location
of the error.

The following expressions are equivalent:

The expression evaluator does not attempt to optimize the expression. This only becomes
significant with searches using NEAR or phrases because these searches require reading the
Text.

Ranking Search Results

Search results may be ranked by setting the TrbSearch RankMode property to rmNone
(default), rmCount, or rmPercent. Ranking is similar to proximity searches in that Rubicon
does not store the number of times a word appears in a location. To calculate the number
of times a word(s) appears at a location, Rubicon must read the text for the location and
count the matching words.

The rmPercent RankMode calculates the relative ranking (100 being highest) of a record rel-
ative to all the other matching records. This means that requesting a single location’s rank
requires all the locations to be counted and ranked.

For performance reasons, ranking is best used when the number of locations matching the
search criteria is small. When there are a large number of matching locations, the user
should be asked to forgo ranking or asked to be more specific in their search.

Common Search Mistakes

Mistake Solution

(windows or driver) near video Windows near video or driver near video

like (problem or corruption) Like problem or like corruption

like 'delphi' Like delphi

like "borland delphi" None

windows or driver not video Windows or driver and not video

windows driver Windows and driver
Use slSmart SearchLogic

windows and driver near video windows and (driver near video)

windows or driver and not video (windows or driver) and not video

windows and driver and video ((windows and driver) and video)

Rubicon Reference

16 Evaluation

Databases and Tables

The core Rubicon components are not tied to databases or tables. As a result, the discus-
sion up to this point has tried to treat Text and Words as abstract containers. As a practical
matter, however, Text and Words are almost always tables residing in a database.

When working with tables, the concept of location translates to a record (a logical piece of
text), and the location itself being an index field (e.g. CustNo).

Rubicon 1: IndexMode was a prominent property, but it was removed in Rubicon 2.
Whenever IndexFieldName is set, the component behaves as if imOrdinalIndex is being
used. A blank IndexFieldName used with the TrbCustomTextBDELink class causes the
component to behave as if imRecordNo or imSeqNo is being used.

Reading and writing of data is handled by the TrbTextLink and TrbWordsLink components.
Much of the driver functionality is contained in the TrbTextDataSetLink and TrbWords-
DataSetLink classes. As their names imply, they are entirely based on the TDataSet class.
This makes for easy extensibility to Borland VCL controls like TTable and TQuery, as well as
to third party virtual dataset descendents.

With Rubicon 2 and Rubicon 3, tables may be accessed via a TQuery which is often pre-
ferred when working with an SQL database.

Rubicon components TrbMake and TrbMatchMaker create tables. This may require that the
user be given table creation privileges.

Borland/DevCo/CodeGear/Embarcadero Drivers

Rubicon comes with native drivers for IBExpress, dbExpress, ADO and BDE access to
tables. For each of these, there is a driver for the Text and a driver for the Words index.
The naming convention for the drivers is TCustomTextXxxxLink and TrbCustomWordsXxxx-
Link, where Xxxx is Table, Query, etc.

The TTable based drivers are best suited for local tables, while the TQuery based drivers are
geared for SQL compliant databases.

Third Party Drivers

Drivers have been written for many popular third party database engines. For more the
most up to date information on these drivers, including installation instructions, please
visit www.href.com/rbnotes.

When a vendor’s database engine supports more than one table format, testing is con-
ducted on the most popular format. If you experience a problem using a drive using a
table format other than the primary one, you may wish to conduct some tests with the pri-
mary format before contacting HREF Tools.

Evaluation 17

Rubicon Reference

Fields

Records typically have multiple fields, one of which is the index field with provides the
location of the record, and one or more fields that contain the text to be indexed. When
processing the record, Rubicon treats the text as coming from one location and is unaware
of any field distinction.

This means that searches identify the record satisfying the search criteria, not the individual
field. This is generally a plus as the user need not distinguish between fields when entering
a search.

However, there are times when a search needs to be field specific, in which case there are
two options: use the SubFieldNames property or build a Words table for a specific field(s).
The SubFieldNames approach works well in most cases except when the search is likely to
bring back a large result set. Creating a separate Words table improves search performance,
but increases the maintenance task as more tables have to be updated.

Note: Proximity searches do respect field boundaries.

Transactions

Rubicon components are transaction aware. The components that write data publish a
Transactions property that, when set, usually results in significantly faster write perfor-
mance. Rubicon is not aware of how your application may be dealing with transactions, so
if the application is explicitly controlling transactions, Rubicon transaction handling
should be disabled in order to avoid collisions.

Rubicon Reference

18 Evaluation

Utility Programs

Eight (8) utility programs are included with Rubicon, for data management: Verify, AdoVer-
ify, Compare, Optimize, Convert, EditProp, Accept and Server.

Use the Verify utility to check the integrity of Words. If Verify reports any errors, Words
should be rebuilt. (Use AdoVerify with ADO.)

Use the Compare utility to compare two Words. Generally, two Words will only pass the
Compare tests when they are exactly the same. Words that have different table types may
pass the test if all the words consist of standard characters (international characters may be
treated differently by the table types and therefore cause differences).

Use the Optimize utility to determine the optimal size for BlobFieldSize, BytesFieldSize, or
CharFieldSize. An important factor in determining the optimal size of these fields is the
number of overhead bytes per record of blob storage. This value is entered in the Over-
head edit box. After pressing the Optimize button, the optimal field size will be reported.
Note that ‘optimal’ is the minimum table size, not optimal performance. All the table sizes
reported are estimates and do not include any table overhead or slack space other than
blob overhead.

After using Optimize, you may use Convert to change the structure of Words. This is most
useful for changing the values of BlobFieldSize, BytesFieldSize, CharFieldSize, and the value
of SegmentSize. You may also convert Words from the segmented structure to a non-seg-
mented structure.

EditProp may be used to view and modify the properties stored in Words. Generally,
properties should not be changed since any change will not be reflected in the words and
indexes.

Use Accept to test various combinations of TrbAccept properties against a Words table. The
program will show how many words were rejected.

The 8th utility is the Server utility.

Evaluation 19

Rubicon Reference

Setup Programs

The following programs install to the Rubicon\Setup folder.

Use RbcResetSampleData to download sample data files for use with the demos. This pro-
gram uses a freeware utility named url2file to dowload the relevant files from
http://data.rubicon.href.com/ and to save them to a local folder, Rubicon\RBSampleData, for
you.

If you need to make path adjustments and rebuild your packages, run the BAT file in the
Setup folder that starts ZMAdmin.exe. ZMAdmin is a configuration maintenance utility,
and when run from the provided BAT file, it loads a custom panel for Rubicon configura-
tion. You can toggle database bridges off and add you can customize their search paths.
This may be necessary when a vendor updates their libraries after you have installed Rubi-
con. After making any such changes, and keeping Delphi closed, run three BAT files in
sequence to launch RbcAssistant.exe with suitable parameters for rebuilding your pack-
ages and (re)installing them to the IDE. Of course, you can not activate a Rubicon database
bridge that is not installed; you would have to re-run the Rubicon Setup to achieve that.

Use Hunt4Packages.exe to quickly search your disk(s) in relevant places for a particular
package (if you see the Fatal Required Package Not Found error).

Rubicon Reference

20 Evaluation

FREE Rubicon Editions and Their Limits

Evaluation Edition

The FREE evaluation version of Rubicon is ideal for anyone who needs to test database
bridges other than BDE/ADO/IBExpress/dbExpress. There should be an evaluation edition
for each supported compiler at http://www.href.com/pub/rubicon. In the 3-6 weeks after
Embarcadero has released a neweversion of RAD Studio, i.e. September/October each year,
the evaluation installers can be delayed relative to the Lite and Paid editions, because HREF
Tools needs to collect and test all the third party components for the newest compiler.

These are the differences between the Eval edition and the Paid edition:

• Source code is not included

• You must generate an unlock code for yourself at http://www.href.com/unlock

• You must use packages when compiling the demos, the utilities and your own test
projects. (See: Operations chapter.)

• There is a time limit, after which the components will revert to Unregistered Lite mode.

• The Delphi IDE must be running for many, but not all, operations.

Lite Edition

The Lite edition uses the same files as the evaluation edition. The difference is that you do
not need to unlock it (i.e. you do not need to tell us your email address). The lite edition is
suitable for small, personal applications, education/training situations.

The limitations to the lite edition are:

• Source code is not included

• You must use one of the database bridges with native support within RAD Studio:
BDE/ADO/IBExpress/dbExpress.

• You must compile with packages.

• The Words table may not contain more than 1500 words.

• There is a minimum delay of 1.5 seconds per search.*

• A small yellow form floats on the screen during operation.*

* The limits marked with an asterix can be removed immediately if you ask for a FREE
Registered Lite license at http://www.href.com/unlock now.

Evaluation 21

Rubicon Reference

Verifying Your License and its Limitations

After installing, you can look at the AboutLicense property on TrbSearch and other compo-
nents in the Delphi IDE. You can also check the information at runtime with code such as
the following:

procedure TForm1.Button1Click(Sender: TObject);

var

x: TrbSearch;

begin

x := nil;

try

x := TrbSearch.Create(Self);

ShowMessage(x.AboutLicense); // License info shown here

finally

FreeAndNil(x);

end;

end;

Rubicon Reference

22 Evaluation

Rubicon End User License Agreement

This End User License Agreement ("EULA") contains the terms and conditions regarding
your use of the SOFTWARE (as defined below). This EULA contains material limitations to
your rights in that regard.

0. SOFTWARE. Rubicon Pro version 3 in one of three modes: registered (paid), evaluation
(free with timeout), or lite (free with limited features).

1. LICENSE. HREF Tools Corp. ("HREF") hereby grants to you, the undersigned, and you
accept, a nonexclusive, nontransferable license to install, use, and display the Licensed
Software on unlimited computers, subject to restrictions which follow. You may use the
Licensed Software for the purpose of developing your own software applications, in accor-
dance with the terms of Section 2, below. A copy of the Licensed Software may be made for
archival or backup purposes as long as it contains all the original Licensed Software propri-
etary notices. You may not sublicense, rent, distribute, lease or otherwise transfer or assign
any or all of your rights in the Licensed Software. You may not distribute the Licensed Soft-
ware as a stand-alone product. You may not reverse assemble, reverse compile, disassem-
ble, or in any way reverse engineer the Licensed Software. You may not translate the
Licensed Software without written permission from HREF. This license does not grant you
any right to bug fixes, enhancements, updates or new versions, but if such are made avail-
able to and are obtained by you, then they shall become part of the Licensed Software and
governed by the terms of this License. HREF reserves all rights not expressly granted to you
in this License.

Evaluation/Lite users may not change, alter or modify the Licensed Software.

2. CREATING APPLICATIONS. Your rights to create and distribute your own software
applications that use the Licensed Software as a runtime component ("Applications") is
based on Rubicon being designated a ROYALTY-FREE product.

2(a). ROYALTY-FREE LICENSES. The following terms apply:

You may freely distribute your own Applications that use Licensed Software as a runtime
component without payment to HREF, if and only if the Licensed Software used by such
Applications is not marked as a Free Evaluation Version, and the Applications: (a) contain
no modifications to the Licensed Software (including alterations to the original proprietary
notices); and (b) are in compiled, executable form; and (c) do not provide substantially the
same functionality as the Licensed Software or have as one of their purposes to build other
software that would compete with the Licensed Software; and (d) do not reproduce or dis-
tribute any portion of the documentation for the Licensed Software or document the Appli-
cations in a manner that identifies the programmatic interface to the callable routines in the
Licensed Software; and (e) are subject to a license agreement that (i)limits Applications
end-users use of the Licensed Software to a run-time component, (ii) restricts the Applica-
tions end-user from changing, altering or modifying the Licensed Software, creating deriv-
ative works, translations, reverse assembling, reverse compiling, disassembling, or in any
way reverse engineering the Licensed Software, and (iii) prevents the Applications end-user

Evaluation 23

Rubicon Reference

from sublicensing, renting, distributing, leasing or otherwise transferring or assigning any
portion of the Licensed Software other than as specifically permitted in this Section 2, you
may not create any derivative works of the Licensed Software.

2(b). EVALUATION LICENSES. If the product you have downloaded or otherwise
obtained is unlocked with an EVALUTION license, the following terms apply: you may
install one copy of the Licensed Software for development and testing purposes until the
date stated in the unlock code (typically 14 calendar days) ("Evaluation Time"). Upon expi-
ration of the Evaluation Time, the Licensed Software must be erased from the computer it
was installed on and all copies destroyed. Under no circumstances should evaluation soft-
ware be used for commercial purposes. Evaluation software may contain mechanisms that
inhibit its ability to function at a later date.

HREF offers evaluation unlock codes at http://www.href.com/unlock in exchange for a
valid email address.

2(c). LITE LICENSES. If the product you have downloaded or otherwise obtained is
unlocked with a LITE license, your usage is governed by 2(a) and you must respect the fea-
ture limitations of the LITE edition.

2(d). FILES MARKED WITH ALTERNATE LICENSES. At HREF's sole discretion, the
SOFTWARE may be distributed with files which are individually licensed under Creative
Commons, "MIT", or other generous licenses which carry fewer restrictions than 2(a). Any
such files are clearly marked with a licensing comment at the beginning of the file. You
may use any such individual file according to the information in that file (for example,
under Creative Commons, you may distribute that file as long as you keep the credits
intact).

3. RIGHTS IN LICENSED SOFTWARE. You acknowledge that the Licensed Software and
any copies, regardless of the form or media in which the original or copies may exist, are
the sole and exclusive property of HREF; by accepting this License, you do not become the
owner of the Licensed Software recorded on the media. You further acknowledge that the
Licensed Software, including the code, logic and structure of the Licensed Software, con-
tain valuable trade secrets belonging to HREF. You agree to secure and protect the Licensed
Software consistent with the maintenance of HREF's rights in the Licensed Software, as set
forth in this License. You agree that HREF can use the information provided during the
purchase of the Licensed Software to deliver and confirm your purchase, in the marketing
or promotion of the Licensed Software, or for other relevant purposes, as well as contact
you again about other products, services, or offers.

4. THIRD PARTIES. You acknowledge and agree that the Licensed Software may be used to
connect to or integrate with software and other technology owned and controlled by third
parties. In order to connect to or integrate with any and all other such third party software
or technology you may be subject to a license agreement with that third party. You
acknowledge and agree that you will look solely to the applicable third party and not to
HREF to enforce any of your rights with regard to such third party software or technology.

5. COPIES. The Licensed Software is copyrighted under the laws of the United States and

Rubicon Reference

24 Evaluation

international treaty provisions. Notwithstanding the copyright, the Licensed Software con-
tains trade secrets and confidential information of HREF. You agree not to disclose or other-
wise make available any part of the Licensed Software to any third party on any basis, other
than as set forth in Section 2. You agree not to distribute any copies of the documentation
of the Licensed Software.

6. TERM. This License shall be perpetual unless you fail to observe any of its terms, in
which case it shall terminate immediately, and without additional prior notice, provided,
however, that copies of the run-time component of the Licensed Software that are part of
the Applications licensed to third parties may be retained by such licensed third parties in
accordance with this Agreement. Upon termination or expiration of this Agreement, you
shall return the original and all copies, complete or partial, of the Licensed Software to
HREF, and shall not access such media for the purpose of recovering any of the Licensed
Software from any copies that may exist with respect to media containing regular backups
of your computer or computer system. The terms of Sections 3, 4, 5, 7, 8, 9, 10 and 11
shall survive termination of this Agreement.

7. DISCLAIMER OF WARRANTY. THE LICENSED SOFTWARE IS PROVIDED "AS IS"
WITHOUT WARRANTY OF ANY KIND, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, HREF SPECIFICALLY DOES NOT WARRANT, GUARANTEE, OR
MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE
USE, OF THE LICENSED SOFTWARE OR WRITTEN MATERIALS IN TERMS OF COR-
RECTNESS, ACCURACY, RELIABILITY, CURRENTNESS, OR OTHERWISE. THE ENTIRE
RISK AS TO THE RESULTS AND PERFORMANCE OF THE SOFTWARE IS ASSUMED BY
YOU. NO ORAL OR WRITTEN INFORMATION OR ADVICE GIVEN BY HREF OR ITS
EMPLOYEES SHALL CREATE A WARRANTY OR IN ANY WAY INCREASE THE SCOPE
OF THIS WARRANTY, AND YOU MAY NOT RELY ON ANY SUCH INFORMATION OR
ADVICE.

8. LIMITATION ON LIABILITY. The Licensed Software may produce inaccurate results
because of a failure or inaccuracy in the performance of the software, because you input
incorrect data, or for many other reasons. You assume full and sole responsibility for any
use you make of the output from the Licensed Software, and you bear the entire risks of
there being an error in the output. You agree that regardless of the cause of any error or the
form of any claim, YOUR SOLE REMEDY AND HREF'S SOLE OBLIGATION SHALL BE
GOVERNED BY THIS AGREEMENT AND IN NO EVENT SHALL HREF'S LIABILITY
EXCEED THE PRICE PAID TO HREF FOR THE LICENSED SOFTWARE. YOU
EXPRESSLY AGREE THAT IN NO EVENT SHALL HREF BE LIABLE FOR ANY CONSE-
QUENTIAL, INCIDENTAL OR SPECIAL DAMAGES ARISING FROM THIRD PARTY
SOFTWARE OR TECHNOLOGY, BREACH OF WARRANTY, BREACH OF CONTRACT,
NEGLIGENCE, OR ANY OTHER LEGAL THEORY, WHETHER IN TORT OR CONTRACT,
EVEN IF HREF HAS BEEN APPRAISED OF THE LIKELIHOOD OF SUCH DAMAGES
OCCURRING, INCLUDING WITHOUT LIMITATION DAMAGES FROM INTERRUP-
TION OF BUSINESS, LOSS OF USE OF SOFTWARE, LOSS OF DATA, COST OF RECRE-
ATING DATA, COST OF CAPITAL, COST OF ANY SUBSTITUTE SOFTWARE, OR
LOSSES CAUSED BY DELAY. HREF shall not be responsible for any damages or expenses

Evaluation 25

Rubicon Reference

resulting from alteration or unauthorized use of the Licensed Software, or from the unin-
tended and unforeseen results obtained by you resulting from such use.

9. INDEMNIFICATION. You hereby agree to indemnify HREF and its officers, directors,
employees, agents, and representatives from each and every demand, claim, loss, liability,
or damage of any kind, including actual attorneys fees, whether in tort or contract, that it
or any of them may incur by reason of, or arising out of, any claim which is made by any
third party with respect any breach or violation of this Agreement by you or any claims
based on the Applications and the Licensed Software included therein.

10. U.S. GOVERNMENT RESTRICTED RIGHTS. The Licensed Software is Commercial
Computer Software provided with RESTRICTED RIGHTS under Federal Acquisition Regu-
lations and agency supplements to them. Use, duplication or disclosure by the U.S. Gov-
ernment is subject to restrictions as set forth in subsection (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFAR 255.227-7013 et. seq. or
252.211-7015, or subsections (a) through (d) of the Commercial Computer Software
Restricted Rights at FAR 52.227-19, as applicable, or similar clauses in the NASA FAR Sup-
plement. Contractor/manufacturer is HREF Tools Corp., 1275 Fourth Street #109, Santa
Rosa, CA 95404.

11. EXPORT CONTROLS. None of the Licensed Software, or underlying information may
be exported, directly or indirectly, without the prior written consent, if required, by the
office of Export Administration of the United States, Department of Commerce, nor to any
country to which the U.S. has embargoed goods, to any person on the U.S. Treasury
Department's list of Specially Designated Nations or the U.S. Commerce Department's
Table of Denials. By consenting to this License you warrant that you are not located in,
under the control of, or a national or resident of any such country or appear on any such
list and further warrant that you will not distribute the run-time version of the Licensed
Software to any entity that is located in, under the control of, or a national or resident of
any such country or appears on any such list.

12. ENTIRE AGREEMENT. YOU ACKNOWLEDGE THAT YOU HAVE READ THIS
LICENSE, UNDERSTAND IT, AND AGREE TO BE BOUND BY ITS TERMS AND CONDI-
TIONS. YOU ALSO AGREE THAT THIS LICENSE IS THE COMPLETE AND EXCLUSIVE
STATEMENT OF THE AGREEMENT BETWEEN HREF AND YOU, WHICH SUPERSEDES
ANY PROPOSAL, PRIOR AGREEMENT, OR LICENSE, ORAL OR WRITTEN, AND ANY
OTHER COMMUNICATIONS RELATING TO THE SUBJECT MATTER OF THIS
LICENSE. This License shall be construed in accordance with the internal laws of Califor-
nia and all disputes shall have exclusive venue in the federal and state courts in Sonoma
County, California, and both parties consent to the jurisdiction of these courts. If any term
of this License shall be found invalid, the term shall be modified or omitted to the extent
necessary, and the remainder of the License shall continue in full effect.

By using the SOFTWARE, you agree to this EULA. If you do not agree, immediately return
this product for a refund.

Rubicon Reference

26 Evaluation

Glossary

Bridge
Same as a driver.

Dictionary
Alternative name for Words. More commonly used in Rubicon 1.

Driver
VCL component that provides the interface between a core Rubicon component
and a storage device (usually a database)

Efficient index
Rubicon keeps track of each word in the text by using a position or location value.
An efficient index is one where each position in a given range is uses or has very
few gaps. An inefficient index has large gaps between locations which results in
wasted memory and disk space.

IndexMode
The manner in which TrbTextDataSetLink identifies a record’s location. Rubicon 2
and 3 alway assumes this is done by using an IndexFieldName.

Link
Same as a driver.

Location
An ordinal value used to uniquely identify a group of text.

Match table
The table created with TrbMatchMaker. Does not have to be a physical table.
Instead, it could be a TClientDataSet.

Ordinal
A SmallInt, Word, Integer, or LongInt field type.

Search table
The table (Text) to be searched.

Segmented
When working with large amounts of text, or a huge number of unique words, it
may be necessary to logically divide the indexing task across several logical seg-
ments. When this is done, the Words are considered segmented.

Target table
The table (Text) to be searched.

Text
The text being indexed, usually in the form of a table.

Evaluation 27

Rubicon Reference

Text table
Same as above.

TextLink
Set this property to the text driver being used to access the Text.

Words
A compilation of the unique words and their indexes, usually in the form of a table.

Words table
Same as above.

WordsLink
Set this property to the words driver being used to access the Words.

Rubicon Reference

28 Evaluation

Planning 29

Rubicon Reference

PLANNING

In this chapter, we cover activities that can be done prior to downloading and installing the
software.

System Requirements

Rubicon requires 32-bit or 64-bit Windows, Delphi or C++ Builder, and approximately
15mb of hard disk space. Rubicon 4 fully supports Delphi 2009+ with Unicode strings.

Common Questions

Q: Does Rubicon handle memo fields?

Yes, Rubicon handles all standard field types. Memo fields are limited to 64k in 16 bit
applications. Nonstandard fields such as ftBlob, ftVarBytes, and 16 bit memo fields
exceeding 64k can be handled via the OnProcessField event handler.

Q: Can the same cache be used to cache indexes from different Words tables?

No, the TrbCache component can only cache indexes from one Words table.

Q: How can I expand acronyms?

Use the OnProcessField event.

Q: Does the Words table or Match table have to be the same table type as the table being
searched?

No. For instance, when indexing a dBase table, you may want to use a Paradox Words
table in order to take advantage of the binary data field. In a client/server situation, you
may not want to create a Match table on the server and instead create it on the client side
using a local table type.

Q: When using the BDE, which local table format is best for the Words table?

Paradox... since it natively supports the ftBytes field type (see BytesFieldSize) and has very
little overhead for blob fields.

Q: Does the AltMemMgr option replace the standard Delphi memory manager?

No, it merely supplements the standard memory manager during GetMem and FreeMem

Rubicon Reference

30 Planning

calls, and only is used for cache memory.

Q: Can a Words table built with a 16 bit application (Delphi 1.0) be read by a 32 bit appli-
cation (Delphi 2.0_+) ?

Yes, and visa versa.

Q: Can binary field (BytesFieldSize) be used with InterBase tables?

No. Despite the fact that InterBase supports the ftBytes field type, testing shows that Rubi-
con is not compatible with the way this field type has been implemented.

Paradox and dBase Options

When using the TrbCustomTextBDELink derived components with Paradox and dBase
tables, the IndexFieldName property need not be set. As explained below, there are many
advantages to using the IndexFieldName property, but in some situations it can be safely
avoided.

When the IndexFieldName property is not set, Rubicon uses the Paradox sequence number
or the dBase record number as the location. The main drawback to record based locations
is that they restrict the ways updates can be performed and can dictate which index is used.

Using the IndexFieldName property has the following advantages:

• Best choice when a primary or unique secondary key consisting of a single ordinal field
is available

• Available for all table types

• Scales easily to SQL

• Most compatible with dynamic updating

• Works with some filters (see Filters and Ranges)

• When IndexFieldName is not used for dBase tables:

• Updates may only consist only of appends and edits allowed, deletions allowed only if
the table is not packed, and no insertions are permitted

• No range limits may be in place

• Works poorly with filters

Planning 31

Rubicon Reference

• Table must be open in natural (record number) order

• Packing the table after the creation of the dictionary requires a rebuild of the dictionary

When IndexFieldName is not used for Paradox tables:

• Updates may only consist only of appends and edits, deletions and insertions are not per-
mitted

• Does not support filters or ranges

• During searches and updates, the table must use the same index that was in place when
processed by TrbMake

Rubicon 1: A blank IndexFieldName property has the same affect as setting the IndexMode
to imRecordNo or imSeqNo for dBase and Paradox tables, respectively.

Component Hierarcy

See also: Docs\Model.zip for the model files for Rubicon. If you do not have this file,
re-install Rubicon, and be sure to select the Model.zip option under Documentation.

Third party drivers are not included in the hierarchy, but usually descend from TrbText-
DataSetLink and TrbWordsDataSetLink.

TObject

 TPersistent

 TComponent

 TrbBase

 TrbMatchMaker

 TrbTextLink

 TrbTextDataSetLink

 TrbTextBaseTableLink

 TrbCustomTextTableLink

 TrbMakeTextTableLink

 TrbTextTableLink

 TrbTextSQLLink

Rubicon Reference

32 Planning

 TrbCustomTextQueryLink

 TrbMakeTextQueryLink

 TrbTextQueryLink

 TrbWordsLink

 TrbWordsDataSetLink

 TrbWordsBaseTableLink

 TrbCustomWordsTableLink

 TrbMakeWordsTableLink

 TrbWordsTableLink

 TrbWordsSQLLink

 TrbCustomWordsQueryLink

 TrbMakeWordsQueryLink

 TrbWordsQueryLink

 TrbBaseCache

 TrbCustomCache

 TrbCache

 TrbEngine

 TrbCustomMake

 TrbMake

 TrbCustomConvert

 TrbConvert

 TrbReadEngine

 TrbBaseUpdate

 TrbCustomUpdate

 TrbUpdate

 TrbServerUpdate

 TrbClientUpdate

TrbBasicSearch

Planning 33

Rubicon Reference

 TrbModeSearch

 TrbWildSearch

 TrbProximitySearch

 TrbLogicSearch

 TrbNavSearch

 TrbRankSearch

 TrbSearch

TDataSet

 TDBDataSet

 TTable

TrbTable

 TrbProgressDialog

 TrbController

TrbUpdateDialog

TWinControl

 TCustomControl

 TCustomGrid

TDrawGrid

 TStringGrid

 TrbHints

 TCustomEdit

 TCustomMemo

TCustomRichEdit

 TrbRichEdit

Rubicon Reference

34 Planning

Installation 35

Rubicon Reference

INSTALLATION

Download

When you purchase a Rubicon license, HREF Tools Customer Service will email you
instructions for downloading the Rubicon Setup file (the installer). You should end up with
a file with a name such as Rubicon_v4.012_Setup.exe.

Alternatively you may download a FREE Lite or Evaluation edition of Rubicon.

The FREE Lite Setup is recommended for obtaining a quick overview, using the latest Del-
phi or C++Builder compiler and the four database bridges supported by Embarcadero
(ADO, BDE, dbExpress and IBExpress). This edition is intentionally is limited and simpler
to use. The Lite Setup is generally available in Code Central, at http://cc.embarcadero.com/.

The Evaluation Setup is also FREE; installers are published for Delphi 2009+ at
http://www.href.com/pub/rubicon/. You can find the exact download location by starting at
the Rubicon product information page which is http://www.href.com/rubicon.

Unusual Features of the Installer

The Rubicon Setup program includes some unusual features:

• It uses ZaphodsMap to remember your configuration settings, instead of the registry.
More information about ZaphodsMap is available at www.ZaphodsMap.com and in the
CodeRage Presentation Archive, searchable at http://www.codenewsfast.com; search for key-
word “zaphodsmap”. ZaphodsMap is an open-source cross-platform configuration system
licensed under Creative Commons and maintained by HREF Tools Corp.

• it writes custom BAT files and runs them in order to compile all packages. These BAT
files run in big black scary DOS windows, but they are quite okay. They will leave a .log
file documenting what they compiled and any fatal errors. Look for log files under Rubi-
con\Packages*.log.
NB: for evaluation and lite users, there is no need nor ability to recompile the core Rubicon
packages.

• By default, the installer will delete any old source, package and utility files prior to in-
stalling, so that you can confidently run the installer repeatedly (without uninstalling in
between).

Rubicon Reference

36 Installation

Running Setup

When you run the Setup program, you will be shown a license agreement and a readme
file. On the next page, you will be able to select product components to install, as shown in
the following screenshot.

Setup: Select Components to Install

Be sure to scroll down to see all options. The list of database bridges from third parties (i.e.
other than Embarcadero) are available in the Paid and Evaluation Setup programs.

The list of compilers is at the end. You may install files for Delphi and C++Builder at the
same time if you wish.

Installation 37

Rubicon Reference

Setup: Select Compiler(s)

Errors about Third-Party Bridges

Based on your choice of compilers and database bridges, a utility named RbcAssistant
will generate a series of dccdpk.bat files to compile all necessary packages during setup.
There are three steps to this:

1. Write the dccdpk.bat files under Rubicon\Packages\pkg_d17_win32 etc.

2. Run the dccdpk.bat files and display any errors

3. Install the packages to the RAD Studio IDE

Errors are generally caused by:

a) the third party files are actually missing from disk (forgot to install them first)

b) Rubicon does not know where the files are

If (a), just install the third party product and then re-run the Rubicon Setup.

If (b), follow the advice in the error log file. When you Start > All Programs > HREF
Tools > Rubicon > ZMAdmin, you will be able to enter the correct search path(s) for your
bridges as shown in the upcoming screen shot. After correcting the paths, you need to
repeat steps 1-2-3. You can run them from the Rubicon\Setup folder or via Start > All
Programs > HREF Tools > Rubicon shortcuts.

Rubicon Reference

38 Installation

Use ZMAdmin for Rubicon to Correct Library Names and Paths

Detailed Installation Log Available

Just before the Rubicon Setup finishes - before you [Close] the dialog - you have the option
of displaying a detailed log. This log contains information which will be very helpful in
troubleshooting any installation problems you may experience. To save it, right-click to

Installation 39

Rubicon Reference

bring up the “Copy to Clipboard” feature as shown in the following screenshot.

Setup Print Details

Extra Sample Database Files

As of Rubicon v4.0.1, we are no longer using subversion to maintain the archive of sample
database files. Instead a normal http address is used, with no login, and a new utility is pro-
vided to make it very easy to get started.

Just run Setup\RbcResetSampleData.exe. You should do this before trying to run any of
the demo programs.

If you wish to see the files with a web browser, visit http://data.rubicon.href.com/RBSample-
Data.

Third Party Drivers

Please note that changes made by third party vendors to their components after the release
of Rubicon may require minor changes in the related Rubicon packages and/or recompila-
tion of the packages.

In general, if you wish to recompile your Rubicon packages, exit Delphi, run ZMAdmin
for Rubicon to correct any settings, and then run all three steps in Rubicon\Setup to (1)
create dccdpk.bat; (2) run dccdpk.bat, and (3) install the resulting packages into the
Delphi Integrated Development Environment (“IDE”).

Rubicon Reference

40 Installation

C++ Builder Package Installation

Please remember to select C++Builder as a compiler during installation if you want pack-
ages installed for it.

Files will be installed to

Packages\pkg_c17_win32 for C++Builder XE3

Packages\pkg_c17_win64 runtime only, for C++Builder XE3

Packages\pkg_c16_win32 for C++Builder XE2

Packages\pkg_c16_win64 runtime only, for C++Builder XE2

Packages\pkg_c15_win32 for C++Builder XE

Packages\pkg_c14_win32 for C++Builder 2010

Packages\pkg_c12_win32 for C++Builder 2009

Installation 41

Rubicon Reference

Package Naming Conventions

The package naming convention is as follows:

rbc40_B_LNG_UUU_NNN_WIN32.ext

• 40 is the Rubicon version number

• B represents the database bridge (the driver) and is detailed below

• LNG is ‘pas’ for Delphi/Pascal or ‘cpp’ for C++Builder

• UUU is ‘lib’ for runtime library or ‘ide’ for integrated design environment

• NNN is the target compiler and is detailed below, e.g. d17 for Delphi XE3

• ext is the appropriate extension (DCP or BPL)

Table: Database Bridge codes used in Rubicon Package Filenames

Bridge For Code

Advantage Database A

Borland Database Engine B

SDAC C

DBISAM D

IBX (Interbase Express) E

FIBPlux F

UIB G

Interbase Objects TIBO* components I

AnyDAC K

ElevateDB L

ADO M

NexusDB N

Direct Oracle Access O

PgDAC P

DISQLite3 Q

Rubicon Core R

dbExpress S

Absolute Database T

UniDAC U

Rubicon Reference

42 Installation

Demo/Example Programs

The Rubicon\RBDemos subdirectory contains examples for all database bridges.

In many instances, a table in the driver’s format will have to be created. This can be
done using the MakeData.dpr application in the subdirectory. The MakeData appli-
cation “copies” the Paradox table help.db to the third party table format. This
requires that the BDE and the third party driver be installed.

Primary Example Programs

These examples are provided for ALL database bridges:

ExMake:
Builds a Words table. Uses the TrbProgressDialog component. This example must
be run before any of the other examples!

ExSrch:
Perform searches and creates a match dataset. Try using different property values
for SearchLogic and RankMode.

ExUpd:
Uses TrbUpdate and TrbTable to perform updates to the table. Try making a
change, then click the 'Words' and see the change.

ExAppend:
Example of TrbAppend.

Table: Compiler codes used in Rubicon Package Filenames

Compiler Code

Delphi 2009 d12

Delphi 2010 d14

Delphi XE d15

Delphi XE2 d16

Delphi XE3 d17

C++Builder 2009 c12

C++Builder 2010 c14

C++Builder XE c15

C++Builder XE2 c16

C++Builder XE3 c17

Installation 43

Rubicon Reference

Secondary Example Programs

These examples are provided for selected bridges. Many of these were writtenfor the BDE
and assume a local “table” or “briefcase” model database.

ExNav:
Demonstrates the use of the FindFirst, FindNext, FindPrior, and FindLast methods.

ExFltr:
Uses the Matches method to filter the records. 32 bit only.

ExRange:
Demonstrates how to perform searches when a range or filter is in place.

ExQuery:
Shows how to combine the full text search capabilities of Rubicon with a TQuery
that operates on numeric/date fields.

ExCntrlr:
Example of TrbController.

ExClient:
This is a network version of ExUpd. Before running ExClient, start the Server
application (look in the Utils folder), press the Process button, then start ExClient
and try making the same change as described in ExUpd.

ExHints:
Demonstrates the use of the TrbHints component.

ExHtml:
Example of how to search external files – in this case HTML files.

ExRTF:
Similar to ExHTML, but processes text and RTF files.

ExSgmnt:
Shows how two TrbMake’s can build a single Words table using the FirstSegment
and LastSegment properties. See comments in the Button1Click procedure. This
example creates a Words table identical to the one created in ExMake. Segmenta-
tion is necessary when working with extremely large dictionaries.

Rubicon Reference

44 Installation

Resource Definition 45

Rubicon Reference

RESOURCE DEFINITION

In this chapter we cover making adjustments in the environment or associated technology
needed to accommodate Rubicon.

Hint for Evaluation and Lite Editions

When you compile the demos, utilities, or your own projects, you MUST compile with
packages.

For example, your runtime package list might look like this when compiling the ExMake
demo with IB Express (bridge “E”):

rbc40_core_free_pas_lib;rbc40_core_pas_lib;rbc40_e_pas_lib;

If you do not compile with packages, Delphi will complain that it can not find files such as
rbdefine.inc. Purchase a license to obtain full object pascal source.

See page 49 for detailed instructions.

Non-English Text; UTF-8; Unicode

For most of Rubicon’s history, Rubicon was used to index content in English plus a few
Western-European languages, all using Ansi Code Page 1252.

Rubicon v2.134 was the first edition to let you take advantage of alternate character sets.

Rubicon v4.0 fully supports Unicode content.

Enable Indexing of Unicode Content

As of Rubicon v4, you can index Unicode content by setting one flag and defining your
alphabet. The flag that you must set is

rbMake1.Ansi := False;

Customize the Alphabet Symbols

To define your “alphabet” to be other than English A..Z, set the following property:

rbAccept1.Alpha := ‘ABC...’; // use your alphabet symbols here

Rubicon Reference

46 Resource Definition

If you wish to generate the alphabet symbols programmatically, refer to this small Code
Central project #28624 (full Delphi source), http://cc.embarcadero.com/Item/28624

IB Express

Be sure to set the UTF8 character set on your database connection component:

IBDatabase1.Params.Values['lc_ctype']:='UTF8';

Note that even though you set the character type to UTF8, your data, in Delphi, will be
UnicodeString not UTF8String. The .AsString method will give you a UnicodeString.

Compiling Third-Party Data Bridges

Packages for all requested data bridges should install and compile automatically for you...

It is absolutely necessary to install third-party database components before Rubicon. For
example, if you are using NexusDB, make sure that you install NexusDB before installing
Rubicon, or else re-run the Rubicon installer again after installing NexusDB.

If a compilation error is reported when you run the Rubicon Setup, look for your
rbc40*.bpl file under the Packages\pkg___ folder. (You will need to memorize the Rubi-
con package code for your bridge in order to know the exact BPL file to look for, e.g. N for
NexusDB. There is a complete list of package codes in the Installation chapter, under
“Package Naming Conventions”.)

If you do not find the BPL file, there is a problem.

Why Bridges Fail to Compile

You can determine the exact reason for the problem by opening the LOG file with a name
such as Rubicon\Packages\dccDPK-d17_win32.log and looking for the word “fatal.”

Configure Library Names, etc.

To fix problems relating to library names or search path, run Start > All Programs > HREF
Tools > Rubicon > ZMAdmin for Rubicon. In ZMAdmin, you can fix third party library
names and/or the path to those libraries. Be sure to include the path for both the DCP and
BPL libraries. Some vendors put both DCP and BPL files in a single path. Other bridges,
include IBObjects, have DCP and BPL files in separate folders so you must reference both
locations.

Rubicon supports some advanced compiler flags. You can enter these in ZMAdmin for
Rubicon. Within ZMAdmin, navigate to Rubicon Components > Rubicon > Compila-
tion. On the right-side panel, you should see a place to enter Compiler Defines.

Resource Definition 47

Rubicon Reference

Within ZMAdmin, you can display Hints. Open those and read them for specific help with
any setting.

Recompiling after Fixing Library Names and/or Paths

New in Rubicon v4.0

After you fix library names and paths within ZMAdmin, regenerate everything by running
three BAT files. The following are in the Rubicon\Setup folder:

RbcAssistant_01_Create-Bat-Files.bat

RbcAssistant_02_Run-Bat-Files.bat

RbcAssistant_03_Install-to-IDE.bat

Shortcuts to the same three BAT files are located under Start > All Programs > HREF
Tools > Rubicon.

If you are stuck on step 02, feel free to use our contact page to send your detailed LOG file
to technical support (you can paste it in as part of your message). Use
http://www.href.com/contact or ask for help through the Rubicon support newsgroup
http://www.href.com/newsgroups.

Download Model Files (JPGs)

If you are interested in viewing the model files which show the object oriented structure of
the Rubicon components, you may download them separately from the Setup installer.

There is a 10mb ZIP file waiting at the following web address: http://www.href.com/pub/rubi-
con/Rubicon3/docs/RBModel.zip

Download Borland Database Engine

Although the BDE is officially obsolete, it remains free and extremely useful for many tasks.
With a bit of knowledge, it even works in many 32-bit production situations.

Embarcadero did not ship a 64-bit version of the BDE with RAD Studio XE2 in September
2011 and it seems very unlikely that they would do so in the future.

If you need to install the latest 32-bit BDE without installing Delphi, there is a standalone
installer available for download from http://www.href.com/pub/sw.

Rubicon Reference

48 Resource Definition

Rubicon Demos/Examples Use Shared Config,Yet...

In order to run the Rubicon demos, you will need to connect to some sample data. The
example programs jump through some hoops to figure out the database name, login user,
etc for the content type (e.g. “parts,” “rail accident,” or “rubicon help” content.

You are more than welcome to ignore all that and test against your own databases!!!

Look in the INC file that is included in your ExMake and ExSrch demo program. It will be
connecting up to a database and doing some configuration. Comment that out and put in
the details for your own database and tables.

MakeData Project

If you would like to try a demo with another database bridge, or you would like to recreate
the sample data yourself, you will need to compile and run the MakeData project. The
source installs under Rubicon\RBDemos\demo_b_tquery\MakeData.dpr with all files in
the same directory.

To run MakeData successfully, you need two BDE Aliases defined in advance (or, for
non-BDE applications, look in the Rubicon\RBDemos\rbdemos-readme.txt for instruc-
tions specific to your database bridge).

Use the BDE Admin tool to create aliases. If you have the BDE installed, you probably have
a shortcut to BDEAdmin in Control Panel. Otherwise, look for the program bdeadmin.exe
and run it (usually under Common Files\BDE). They are:

• Rubicon4
This alias should be based on the Standard driver. It should point to the source data
folder, Rubicon\RBSampleData\Paradox

• Rubicon4SQL
This should point to the target database. The driver type depends on the database
type, e.g. INTERBASE for Interbase or Firebird SQL.

dbExpress with Interbase 7, BlackFish

The dbExpress driver has been tested with MySQL, Interbase 7 and Blackfish. When used
with Delphi 2009 and Interbase 7 or Blackfish, it is necessary to install Update 3 to fully
handle BLOB data.

Operation 49

Rubicon Reference

OPERATION

How to Compile with Free Rubicon Components

If you have a Lite or Evaluation license, you must build all projects with packages. The
details vary, depending on which database bridge you are using.

For example, to build with Delphi XE2 and IB Express, the runtime package list would be

rbc40_e_pas_lib_d17_win32;rbc40_core_pas_lib_d17_win32;rbc40_core_free_pas_lib_d
17_win32

i.e. bridge code “E” for IB Express and ‘pas’ for Pascal
d17_win32 for Delphi XE3 on Windows 32-bit
core units for Rubicon itself
core library to enable the free license

whereas for use with C++Builder XE3 and dbExpress, the package list would be:

rbc40_s_cpp_lib_c16_win32;rbc40_core_cpp_lib_c16_win32;rbc40_core_free_cpp_lib_
c16_win32

i.e. bridge code “S” for dbExpress and ‘cpp’ for C++Builder;

c16_win32 for C++Builder XE3 on Windows 32-bit
core units for Rubicon itself
core library to enable the free license

If you do not already know your compiler and database bridge codes, please see the charts
in the Installation chapter.

If you are using the paid version of Rubicon, you may still build with packages if you wish.
The difference is that you never need the third one, rbc40_core_free*.bpl.

Rubicon Reference

50 Operation

To set the list of packages for your project, use the menu in the Delphi IDE: Project >
Options, Packages. You can include more packages than the ones shown above, but not
fewer.

Package filenames have changed since the above screenshot was taken.

How to Make

Building or making Rubicon indexes requires that Rubicon read each record in the target
dataset, process the fields designated to be indexed, and then save the words and their
indexes to the dataset.

Required Components

•TrbMake
•TrbCache
•TrbTextLink descendent

Operation 51

Rubicon Reference

•TrbWordsLink descendent
•TDataSet descendent for Text
•TDataSet descendent for Words

Optional Components

•TrbProgressDialog

Operation

TrbMake uses the TrbTextLink to read the text from the TDataSet descendent being
indexed, builds the indexes for each unique word in memory (TrbCache), and then writes
the indexes via the TrbWordsLink descendent to a TDataSet descendent. A TrbProgressDia-
log can be used to monitor the process of this often lengthy operation.

Note: The TrbTextLink and TrbWordsLink descendents used by TrbMake should include
“Make” in their names (e.g. TrbMakeTextTableLink). These versions of the components
expose properties that are Make specific.

The fields included in the index are controlled by the TrbMake FieldNames property. The
parsing of Words is defined by the MinWordLen and WordDelims properties.

In order to identify where a record came from, each record must have a unique integer
field (IndexFieldName).

Rubicon can try to read the entire table in one step, or it can divide the process into seg-
ments. The latter approach is used with larger table where it is simply impossible to pro-
cess the whole table in one pass. When using segments, the resulting Words table is called
segmented, otherwise it is referred to as non-segmented. The SegmentSize property con-
trols segmentation.

There is no hard and fast rule as to when to use the segmented approach. The factors to be
considered include the number of records, the number of unique words, the efficiency of
the index, and the amount of physical memory installed. A good indication that the pro-
cess would benefit from segmentation is if the build process on a non segmented Words
table slows down significantly and/or there appears to be a great deal of virtual memory
disk swapping.

The amount of memory to devote to the build is controlled by the TrbCache MemoryLimit
property. MemoryLimit should not be set any higher than the point that virtual memory
starts being used. This threshold varies from system to system, but as a general starting
point for Win 9x systems, use physical memory less 8mb, for Win NT, use half of physical
memory.

Non-English Text and Unicode Support

As of v4, you can enable full Unicode support by compiling with Delphi 2009+ and con-
trolling two properties:

Rubicon Reference

52 Operation

rbMake1.Ansi := False;

rbAccept1.Alpha := ‘ABCDEFGHIJKLMNOPQ’; // letters to accept

By default, the letters of your current locale are accepted.

Step By Step

1 Using the BDE Configuration applet in the Control Panel, check that a Rubicon4 alias
exists pointing to RBExamples\data

2 Open a new application

3 Click on the Data Access tab in the component palette

4 Add a TTable (Table1), set the DatabaseName to Rubicon4, the TableName to help.db,
the IndexFieldNames to HelpNo, the Active property to True

5 Add a second TTable (Table2), set the DatabaseName to Rubicon4, and TableName to
Words. Do not try to set Active to True! This table will later be created by rbMake1.

6 Click on the R2 Drivers tab in the component palette

7 Add a TrbMakeTextTableLink (rbMakeTextTableLink1) to the form, set the Table
property to Table1, click on the FieldNames property and add all the fields except HelpNo
and Parent, and set IndexFieldName to HelpNo

8 Add a TrbMakeWordsTableLink (rbMakeWordsTableLink1) to the form and set the
Table property to Table2

9 Click on the Rubicon4 tab in the component palette

10 Add a TrbCache (rbCache1) to the form and set MemoryLimit to 2000 (2mb)

11 Add a TrbMake (rbMake1) to the form, set Cache to rbCache1, set TextLink to
rbMakeTextTableLink1, and set WordsLink to rbMakeWordsTableLink1

12 Add a TrbProgressDialog to the form. It will automatically configure itself.

13 Add a TButton (Button1) to the form, set the caption to Make, double click on the
button and add the following code: rbMake1.Execute

14 To view the tables, add TDataSource and TDBGrid components

15 Run the application and press the Make button

16 You may wish to experiment with the TrbMake MinWordLen and WordDelimiters
parameters and see how they affect the Words table.

Troubleshooting

Since the TrbCache unit is used by several Rubicon components, the MemoryLimit property
has a default value of 1mb which is appropriate when used with TrbSearch. However, 1mb
is usually not enough memory when used with TrbMake. Be sure to increase this value as

Operation 53

Rubicon Reference

described in the previous paragraph.

Extraneous characters can often appear in the Words table. This usually occurs because
the source text has been downloaded from the internet or OCR’d. To filter out these char-
acters, simply add them to the WordDelims property. See WordDelims in the reference sec-
tion on how to filter out all characters less than #30 or greater than #127.

To index lookup or linked fields, simply add a calculated field to the table and included the
calculated field in the FieldNames property. If the link is to a memo field, an OnProcessField
event handler will need to be written that performs the lookup and passes the memo to the
Rubicon engine.

When working with large tables, it is often helpful to test all the property values by setting
the CounterLimit property to 1000. This will build a Words table based on the first 1000
records. Check the words in the table to see if they are properly delineated. When the text
includes international characters, also check that these characters appear correctly in the
table (if not, see International Character Issues).

Example “Make” Project

ExMake.dpr (driver specific version located in each RBExamples subdirectory)

How to Update (Single User)

In order to keep the Words table current, Rubicon needs to be notified before and after
each record is deleted, edited, or inserted. Rubicon then compares the state of the record
before and after the change, determines which words have been added or deleted from the
record, and makes the appropriate changes to the indexes.

Required Components

•TrbUpdate
•TrbTextLink descendent
•TrbWordsLink descendent
•TDataSet descendent for Text
•TDataSet descendent for Words

Optional Components

•TrbTable (recommended)
•TrbCache (recommended)
•TrbUpdateDialog

Rubicon Reference

54 Operation

Operation

As mentioned above, TrbUpdate needs to be notified before and after a change takes place.
The notification process is build-in to the TrbTable component, so if all changes to the table
are processed through TrbTable, the Words will be kept current.

Note: There are dataset specific versions of TrbTable for most third party database engines.

Updating performance can be significantly improved by using the TrbCache component
and setting the TrbUpdate DelayedWrites property to True. Under these conditions,
changes are not immediately written to disk and thus reduce disk I/O. Since updates are
held in cache, other applications performing searches against the same Words table will
not see the changes until they are written to disk by calling either FlushCache or WriteCache
methods (if the other applications are using caches in their searches, then those caches
would also have to be flushed).

Within the same application, the cache can be shared between a TrbUpdate and TrbSearch
that are accessing the same non segmented Words table. This would insure that TrbSearch
would have access to the latest changes without forcing those changes to be written to disk.
If the Words table is segmented, then the cache may not be shared.

When updates consist of just appending new records, other approaches not requiring a
TrbTable (or equivalent) may be used. The TrbUpdate.BatchAdd method and TrbAppend
components are alternatives.

Troubleshooting

Records may be inserted and deleted as long as their location is greater than MinIndex. If
MinIndex is 1000, then any record whose location is greater than 1000 may be inserted or
deleted. Record 1000 may not be deleted, nor may any record be added with a location
less than 1000. Any record may be edited. Certain additional restrictions apply when
using drivers that support a blank IndexFieldName.

In order to be able to delete the first record, or be able to add records in front of the first
record, a number of locations have to be reserved at the front of the index. To do this, add
an OnMinIndex event handler and set the value of MinIndex to a lower value. Using the
above example, setting MinIndex in the OnMinIndex event handler to 500 would enable the
application to delete the record with a location of 1000 and add records as long as the loca-
tion was greater than or equal to 500.

Warning: The OnMinIndex event cannot be used only in TrbUpdate. The event must be
used consistently be each Rubicon component that uses the Words table. This event can-
not be added after the Words table has been built. The Words table must be built with the
event enabled.

Since there should be only one TrbUpdate per Words table, the Cache property may not be
shared with another TrbUpdate component. If the Words table is segmented, the Cache
may not be shared with a TrbSearch component.

Operation 55

Rubicon Reference

Because the Cache is a separate from the update engine and WordsLink, be sure to check
that all the records have been written before shutting down the application. This can be
done by calling the WriteCache method.

The TrbUpdateDialog component may be used during development to monitor the perfor-
mance of the updating process. Among other things, the dialog box displays how many
indexes are held in cache, and of those how many have been modified and not yet written
to disk. These statistics are useful in tuning the performance of the application.

Example

ExUpd.dpr (driver specific version located in most Rubicon\DBDemos subdirectories)

How to Update (Multi User)

Multi user updates work much the same way as single user updates, except that the work is
divided between one or more clients and a single server application. Like a single user
application, the client application notifies Rubicon before and after a change is processed.
Rubicon then calculates which words have been added or deleted. Since other clients may
be updating the same indexes, the client application cannot process changes to the indexes
itself. Instead, the client notifies the server application of the changes by writing those
changes to a common NetDataSet. The server application reads and processes the changes
posted to the NetDataSet and updates the Words table.

Required Components

•Client Application
•TrbClientUpdate
•TrbTextLink descendent
•TrbWordsLink descendent
•TDataSet descendent for Text
•TDataSet descendent for Words
•TDataSet descendent for NetDataSet
•Server Application
•TrbServerUpdate
•TrbTextLink descendent
•TrbWordsLink descendent
•TDataSet descendent for Text
•TDataSet descendent for Words
•TDataSet descendent for NetDataSet

Optional Components

•Server Application

Rubicon Reference

56 Operation

•TrbCache (recommended)
•TrbUpdateDialog
•Client Application
•TrbTable (recommended)

Operation

Multi user updates perform all the same steps as a single user update, but where the work
is performed varies. Setting up the client application is nearly identical with the exception
that a TrbClientUpdate is used instead of a TrbUpdate. TrbClientUpdate does not use a cache
and contains the additional NetDataSet property.

The server application also shares many similarities to a single user update application, but
uses the TrbServerUpdate component which also contains a NetDataSet property. TrbServ-
erUpdate does make use of a cache so that during periods of high activity that changes can
be held in memory and later written to disk.

The server application must be running before any client as it creates the NetDataSet.
However, once the NetDataSet has been created, the server application need not be run-
ning (when the server application is restarted, it will process any changes posted to the
NetDataSet).

The server application should be running on the system where the tables are physically
located. If this is not possible (e.g. with a NetWare file server), then it should be run on a
dedicated client with a fast connection to the file server.

When processing a large number of changes, the server application can fall behind the
activity of the clients. The clients may test to see whether the server has caught up by
using the IsCurrent method.

Troubleshooting

Multi user updates share all the issues with single user updates, but require a bit more
coordination as more applications are involved. Since the NetDataSet is used to transfer
changes between the applications, it must be correctly identified by all the clients and the
server. In addition, the appropriate multi user rights must be set in the database engine.
For BDE applications using local tables, this means setting Local Share to True.

If searches are being simultaneously executed against the Words table, the search applica-
tions should periodically flush their cache so that they will be able to read the most recent
version of the indexes.

Server Application

The server application, Server.dpr, is located in the Rubicon\utils subdirectory. It is a

Operation 57

Rubicon Reference

ready to run server application. You can start it by a shortcut found under Start > Pro-
grams > HREF Tools > Rubicon > Utility - Server.

•The application does not have to be run on the server, although doing so increases perfor-
mance and reduces network traffic
•Configure the application by filling in the edit boxes on the configuration tab. The Text
table and Words table must already exist. The NetDataSet will be created if it does not al-
ready exist.
•Server.exe must be running before any of the client apps (press Process button) if the Net-
DataSet does not exist
•Changes are cached in memory until its cache is full or when it reaches the end of the Net-
DataSet (at which point it is waiting for new records)
•When running, the target table grid does not automatically refresh itself. Do this manually.
Best to leave this grid visible as it does not redraw itself, thereby leaving more time to pro-
cessing.
•When it is processing, navigation of the NetDataSet is disabled

Example

Rubicon\utils\Server.dpr

Rubicon\RBDemos\demo_b_ttable\ExClient.dpr

Rubicon Reference

58 Operation

How to Search

Searching consists of prompting the user for a query, parsing the query into words, reading
the words and indexes from the Words table, and calculating the result. For proximity
searches, ranked searches, and searches using the SubFieldNames property, there is an
added step of reading the text itself.

Note: Many of the basic concepts of searching are discussed in the Architecture section.

Required Components

•TrbSearch
•TrbTextLink descendent
•TrbWordsLink descendent
•TDataSet descendent for Text
•TDataSet descendent for Words

Optional Components

•TrbCache (highly recommended)
•TrbMatchMaker

Operation

Searching always requires setting the SearchFor property and calling Execute. Searches are
not case sensitive. The number of matching locations or records is returned in the Match-
Count property, while the words matched by the search can be accessed by calling the
MatchingWords methods (very useful when wildcards are used). A list of matching loca-
tions can be accessed by calling the MatchingLocations method.

Searches are record specific, not field specific. This means that a search for the word ‘jack-
son’ could find records that contain ‘Mr. Jackson’ in the Name field, ‘125 Jackson Street’ in
the Address field, and ‘Jackson Hole’ in the City field.

Note: proximity searches do not cross field boundaries.

While not requiring the user to specify individual fields to search is generally a plus, there
may be instances when the search should be restricted to a subset of fields. In these cases,
there are two options: one is to construct a second Words table that is limited to the subset
of fields. The limitation here is that the subset would need to be known ahead of time so
that the dictionary could be pre-built (for small databases, this may not be an issue).
When using this approach, the application should have a TrbSearch devoted to each varia-
tion of the Words table. The alternative would be to simply switch the table assigned to
Words table, but this technique incurs a penalty because the component is forced to reini-
tialize itself each time the switch occurs.

The second option would be to use TrbTextDataSetLink SubFieldNames property to limit a

Operation 59

Rubicon Reference

search to a subset of the fields represented in the Words table. Using SubFieldNames forces
the component to read the Text during each search, and is therefore slower than the previ-
ous approach. The only records read are those that match the search criteria before apply-
ing SubFieldNames. During the reading process, the SubFieldNames are checked to ensure
that they meet search criteria.

Rubicon 1: SubFieldNames was part of TSearchDictionary. It now resides in the TrbText-
DataSetLink component.

The FindFirst, FindNext, FindPrior, and FindLast methods may be used to navigate to
matching records. When ranking is not used, navigation is in IndexFieldName order.
When ranking is enabled by setting the RankMode property, navigation is from highest
(FindFirst) to lowest (FindLast) ranking.

Providing a Cache component reduces database reads as indexes that are already in cache
are not re-read. If updating is being performed simultaneously, the cache should periodi-
cally be flushed so that it may access the latest changes to the indexes.

A copy of the matching records may be placed in a separate dataset by using the TrbMatch-
Maker component. This component creates a new dataset, reads the matching records in
the Text and copies them to the new dataset.

Rubicon 1: The functionality of TSearchDictionary CreateMatchTable method now resides
in TrbMatchMaker.

Step By Step

Note: Be sure to have completed the Make Step By Step instructions before beginning here.

1 Open a new application

2 Click on the Data Access tab on the component palette

3 Add a TTable (Table1), set the DatabaseName to Rubicon, the TableName to help.db,
the IndexFieldNames to HelpNo, and the Active property to True

4 Add a second TTable (Table2), set the DatabaseName to Rubicon, TableName to Words,
and the Active property to True

5 Add a third TTable (Table3), set the DatabaseName to Rubicon, TableName to Match,
but leave the Active property False

6 Click on the R2 Drivers tab on the component palette

7 Add a TrbTextTableLink (rbTextTableLink1) to the form and set the Table property to
Table1

8 Add a TrbWordsTableLink (rbWordsTableLink1) to the form and set the Table property
to Table2

9 Click on the Rubicon4 tab on the component palette

Rubicon Reference

60 Operation

10 Add a TrbCache (rbCache1) to the form

11 Add a TrbSearch (rbSearch1) to the form, set the Cache to rbCache1, TextLink to
rbTextTableLink1, and WordsLink to rbWordsTableLink1

12 Add a TrbMatchMaker (rbMatchMaker1) to the form, set the DataSet property to
Table3, and set the Searcher property to rbSearch1

13 Add a TEdit (Edit1) and clear the Text property

14 Add a TButton (Button1), set the Caption to Search, double click on the button and add
the following code:

with rbSearch1 do

begin

SearchFor := Edit1.Text;

Execute;

if MatchCount > 0 then rbMatchMaker1.Execute

end;

15 Add a TDataSource and TDBGrid components and connect them to Table3

16 Run the application

17 Move to Edit1 and enter class

18 Press the Search button and the grid is filled with matching records. For some searches
you may try, the matching words may appear in the memo field (you may want to add a
TDBMemo control to the form to make memo field(s) visible). If you are using your own
table and no records appear in the grid, either enter a more specific search or set the
TrbSearch RecordLimit property to a higher value.

19 Exit the program, select rbSearch1, change the SearchLogic to slExpression and change
the RankMode to rmCount

20 Run the application again, enter class and make into Edit1, and press the Search button.
The matching records are returned in rank order and a rank field has been added as the
rightmost column.

Troubleshooting

Wildcard and proximity searches can be time consuming (e.g. the user searches for ‘*’).
While you may try to validate the search request before passing it on to Rubicon, it is prob-
ably just better to set the TimeLimit property. Once TimeLimit is exceeded, the search will
abort.

Ranking can also be time consuming, so before enabling ranking, you may wish to check
the MatchCount property to see if there are a reasonable number of matching records.

SearchLogic of slNot should not be used when SearchMode is smSearch because any gaps
between index values will be reported as false matches. It is safe to use these results with
subsequent searches to narrow or widen the scope of the search as long as a SearchLogic

Operation 61

Rubicon Reference

other than slNot is used at least once.

If the Words table is segmented, the Cache may not be shared with a TrbUpdate compo-
nent.

Example

ExSrch.dpr (driver specific version located in most Rubicon\DBDemos subdirectories)

How to Use a TClientDataSet

The Client/Server editions of Delphi 3 and above and C++ Builder 3 and above support the
TClientDataSet. This dataset may be used with the rbMatchMaker by simply including the
rbCDS unit in uses clause of the application or unit. The primary advantage of a TClient-
DataSet over a TTable is speed – TClientDataSet is an in-memory table which can be created
much faster than a TTable.

Required Components

TrbSearch

TrbTextLink descendent

TrbWordsLink descendent

TDataSet descendent for Text

TDataSet descendent for Words

TrbCache (highly recommended)

TrbMatchMaker

TClientDataSet for TrbMatchMaker

Operation

The setup is exactly the same as a regular search that uses a TrbMatchMaker with the excep-
tion that a TClientDataSet is used instead of a table based TDataSet descendent. The appli-
cation must include rbCDS in its uses statement.

Troubleshooting

If a “Dataset not supported” error is raised, then rbCDS has not been included the uses
statement.

Rubicon Reference

62 Operation

Example

DBExamples\ttable\ExCDS.dpr

How to Search Multiple Tables

Rubicon may be used to search multiple tables simultaneously. The tables being searched
may or may not have the same field structure. Multi table searching is coordinated by the
TrbController component. Rather than performing the search itself, TrbController simply
coordinates the activities of multiple TrbSearch components and reports back a “consolida-
tion” of results.

Required Components

•TrbController
•For each table being searched
•TrbSearch
•TrbTextLink descendent
•TrbWordsLink descendent
•TDataSet descendent for Text
•TDataSet descendent for Words
•TrbCache (highly recommended)

Optional Components

•TrbMatchMaker
•TDataSet descendent for TrbMatchMaker

Operation

As stated above, TrbController coordinates and consolidates the activities of multiple Trb-
Search components. Before a TrbController can be used, each table being searched must be
prepared by building a Words table and then adding the TrbSearch, link, and dataset com-
ponents to the form or data module in the same fashion as you would when setting up a
single table search.

When placed on the form or data module, the TrbController will coordinate the activities of
all the other TrbSearch components on that form or data module. One of the TrbSearch
components should be designated as the MasterSearcher. Set the SearchFor, SearchLogic,
and SearchMode properties of the MasterSearcher to the desired values. When TrbControl-
ler.Execute is called, it will apply the properties of the MasterSearcher to the other search
components, execute the search, and consolidate the results.

To navigate through the matching records, call the TrbController FindFirst, FindLast, FindN-
ext, and FindLast methods. Since FindNext may move from the last matching record of one

Operation 63

Rubicon Reference

table to the first matching record of the next table, it is important to be able to distinguish
which table the navigation has moved to. Use the Searcher property to determine which
table the FindXxxx routines relate to.

To create a match table, assign a TrbMatchMaker to the TrbController.MatchMaker property
and call TrbController.CreateMatchDataSet (and not TrbMatchMaker.Execute)

The tables being searched may have the same or different record structures. More pre-
cisely, if the field names, types, and sizes are the same for the TrbSearch.FieldNames across
all the search components, then a call to TrbController.CreateMatchDataSet produces a table
just like TrbMatchMaker.Execute would.

If the field names, types, or sizes in TrbSearch.FieldNames are different, then when TrbCon-
troller creates a match table and stores all the field values in a memo field.

In either case, CreateMatchDataSet will also add fields to each record that indicate which
table the matching record originated from. These fields consist of DatabaseName, Table-
Name, and Location.

Use the OnAcceptSearch to control which TrbSearch components are included in the search.
By using this event, tables may be selectively included or excluded from the search.

Troubleshooting

Since TrbController coordinates multiple TrbSearch components, you need to be sure that
each individual TrbSearch component is setup correctly in order for TrbController to work
properly. During development, this may be accomplished by performing a search with
each TrbSearch.

Example

Rubicon\RBDemos\demo_b_ttable\ExCntrlr.dpr

Working with Huge Tables

Working with large amounts of text does not vary significantly from working with ‘normal’
amounts of text. The following sections cover some special considerations.

Testing

Before indexing a large amount of text, it is a good idea to perform a test build by setting
CounterLimit to about 4000, then inspect the Words to see if there are any obvious charac-
ters and/or words which should be excluded from the build.

Rubicon Reference

64 Operation

Configuration

Indexing performance will largely be a function of the number of unique words, the
IndexRange, segmentation, and available memory.

Use the WordDelims, MinWordLen, OmitList, and FieldNames properties to limit the number
of indexed. The OnAcceptWord event may also be used to further limit the number of
words indexed.

The IndexRange is the difference between the maximum and minimum location values. It
is important that this index be efficient so that memory will be used efficiently. An efficient
index is one that has few gaps between index values.

Since TrbMake performs indexing in memory, the amount of physical memory may limit
the capacity of the component. The first option to consider is segmentation. To enable
segmentation, set the SegmentSize property to some fraction of the IndexRange. Segmenta-
tion simply tells TrbMake to divide the job up into more manageable chunks which are
more likely to fit into available memory. Try varying the SegmentSize to find the optimal
value.

Set MemoryLimit equal to the amount of physical RAM minus 4 to 8 mb for Win9x or half
of physical RAM for NT (later, you may wish to experiment with this setting – it is not a
hard and fast rule!). If it appears that the operating system is excessively using virtual
memory and you do not which to decrease the SegmentSize any further, then MemoryLimit
is set too low or more physical memory needs to be added.

Other configuration options include:

Set tables’ Exclusive property to True or turn off Local Share (single user BDE appli-
cations using local tables)

Enable Transactions and/or use TQuery based drivers when using SQL tables

If the table type natively supports ftBytes fields, use the BytesFieldSize property, else
consider using the CharFieldSize property

Set the Ansi property to False, if possible

Enable the dbiRead and dbiWrite options in TrbCustomXxxxBDELink based compo-
nents. These options are valid when using Paradox, Local InterBase, InterBase 4 or higher,
or other servers that supports 32 bit integers

If you are using the BDE and have the choice of local table types, use Paradox

See RBDEFINE.INC for other performance options

Operation 65

Rubicon Reference

Indexing

While the application is indexing, shut down other applications

Build the Words on multiple machines or processors using the FirstSegment and
LastSegment properties of TrbMake

Updating

Updates will generally need to be performed a more powerful system (with ample mem-
ory). It is recommended that a backup copy of the original Rubicon indexes be made
before performing the update. If records are only being added to the table, then the
BatchAdd approach to updating should be considered. If records are only being added and
the Rubicon indexes are not segmented, then TrbAppend may be used.

Searching

There are no special considerations to take into account.

Filters and Ranges

Ranges may be used with Rubicon under certain restrictive conditions. The same is true
with filters with the exception of using search results to filter the view of the Text table (dis-
cussed later in this section).

The Rubicon components keep track of which records words appear in by indexing their
locations. The location is a base plus offset calculation, where the base is the MinIndex and
the maximum is the MaxIndex. The difference between these two is the IndexRange, and
this value is used to determine how much memory is required by each uncompressed
index.

When applied to the Text table, filters and ranges artificially change the MinIndex and
IndexRange of the table, thereby invalidating any existing word indexes. This is because the
components assume that the MinIndex and IndexRange are fixed TrbUpdate is aware of adds
and deletes). This assumption is made for performance reasons since recalculating the
IndexRange takes time (this is especially important for SQL tables). In addition, the calcu-
lation of IndexRange is not performed until the property is first used. This behavior has
important consequences as we will see in the following section.

The key to working with filters and ranges is carefully controlling the values of MinIndex
and IndexRange along with setting the filters or ranges at the right time. Another approach
is to devote a separate unfiltered and 'unranged' or range free dataset to the Rubicon com-
ponent. These methods will be discussed in the following sections. The last alternative is
to clear the filter or range before any Rubicon operation (before a search or change to the
table). Since this can be time consuming, this may not be a practical alternative.

Before going into detail on these, it may be useful to clarify when filters and ranges will not

Rubicon Reference

66 Operation

work:

Filters and ranges may never be used with TrbMake as it requires an unrestricted
view of the Text

Filters and ranges may never be used when using a TrbCustomTextBDELink with a
blank IndexFieldName and the source table is Paradox. Under these conditions, the loca-
tion is a sequence number, and filters and ranges (along with secondary indexes) change
the value of the sequence number (which is the index location), and thereby always invali-
date the word index

Controlling MinIndex and IndexRange

MinIndex and IndexRange remain uninitialized until they are first used. For TrbUpdate and
TrbServerUpdate, they are first used when Initialize is called, while TrbSearch waits until the
first search is performed. Since an application may already have a filter or range in place,
this poses a problem. The workaround is to explicitly call Initialize before any filters or
ranges are put into place. By doing so, the IndexRange is initialized before the filter or
range takes affect and therefore has an unrestricted view of the Text dataset.

IndexRange will also become uninitialized after setting a new DataSet, or IndexFieldName,
and after the Text dataset becomes active.

For the technique used above to work, filters or ranges must not have been enabled from
within the IDE. These are the only steps required for TrbUpdate and TrbServerUpdate.

For TrbSearch, searches may be performed on a filtered or range restricted Text dataset as
long as the search does not use slNear or slPhrase SearchLogic (or use an slExpression that
uses NEAR or phrases), nor may SubFieldNames or other action that requires reading the
Text dataset.

Searches always apply the search to the entire database and the results never reflect any fil-
ters or ranges that may be in place. The FindXxxx routines always navigate based on the
search results, and so they too are unaware of filters or ranges. This essentially restricts you
to using the TrbSearch RankArray and MatchBits properties. For these reasons, it is much
better to use the approach described in the next section.

Using a Separate TTable

Another approach to this problem is to devote a separate TTable to the Rubicon component
and apply the filters and/or ranges to another TTable that the user views on screen. All the
capabilities of TrbSearch may be used, but search results again will be relative to the entire
table, not the filtered or range restricted records. Also, the FindXxxx routines will navigate
the table in the DataSet.

Most of the above restrictions can be overcome by using the CheckMatchResults procedure.
This procedure checks to see whether the records it has located appear in the table with the
range or filter in place. If the record cannot be found, it is removed from the match results.

Operation 67

Rubicon Reference

IndexFieldName

When the IndexFieldName is in use, the first call to IndexRange will force the component to
temporarily switch indexes (assuming the table is not open on IndexFieldName). Switching
indexes will often clear any existing filter or ranges. For this reason, it is better to devote a
separate TTable to TrbSearch.

Using Search Results as a Filter

While it may be difficult to apply a filter or range to search results, it is easy to use the
results of a search to act as a filter. In Delphi 2.0 and higher and C++ Builder, it is simply a
matter of using the OnFilterRecord event:

procedure TMainForm.SearchTable1FilterRecord(DataSet: TDataSet;

var Accept: Boolean);

begin

Accept := rbSearch1.Matches

end;

This example assumes that DataSet is the same as rbSearch1.TextLink.DataSet (this tech-
nique is used in the Rubicon demo). Of course, you may wish to add additional conditions
to the above code to further restrict the view of the table.

The disadvantage of this kind of filter is that a search may only produce a few matching
records from a table of tens of thousands of records or more. You will want to carefully test
this approach to ensure it meets you performance requirements.

Warning: Some Text drivers do not require setting the IndexFieldName. If the IndexField-
Name is not set, filtering will probably not work.

Rubicon Reference

68 Operation

Customization 69

Rubicon Reference

CUSTOMIZATION

Optional Compiler Directives

Rubicon source may be compiled with a number of options which are listed below.

Generally speaking, you should not need to worry about any of these options. They are
listed here for the exceptionally curious developer.

To use any of these, set them under Project > Options for your own projects, and/or set
them in the definition of compflags within ZMAdmin.

Additional information about these flags can be found in the comments in this file:
Rubicon\Source\inc\RBDEFINE.INC.

• AltMemMgr

• Apollo5

• Apollo51

• DBISAM2

• DBISAM2x

• Debug

• DebugMode

• DETECTMEMLEAKS

• FASTMM

• HaveInfoPower

• HStrings

• LongIntTicks

• madExcept

• ManualLeakReportingControl

• MemoryLogging

Rubicon Reference

70 Customization

• ODBCExpress6

• ThreadSafe

• USE_JEDI_JCL

• USE_MDX

• UseAdvantage

• UseApollo

• UseAutoInc

• UseBDE

• UseCodeBase

• UseDBISAM

• UseFlashFiler

• UseGotoKey

• UseHalcyon

• UseNexusDB

• UseRubiconRichEdit

• UseTable

• UseTitan

• UseTopaz

• VendorTab

The VendorTab complier flag determines whether special Rubicon components
install in the IDE onto a palette named Rubicon4 or onto palettes named based on
the name of the vendor of the particular database bridge, e.g. Advantage.

• xDebug

Evaluation and “lite” users can not take advantage of these flags.

Customization 71

Rubicon Reference

Example: Customizing Append and Make Components

The following example was contributed by a customer and is published with permission. It
shows how you can extend the default behavior of the TrbAppend and TrbMake compo-
nents.

Delphi source follows.

unit ebRbMO;

interface

uses

rbAppend, rbMake;

type

 TrbAppendMySample = class(TrbAppend)

 private

 FStopLocation: LongInt;

 public

 procedure Execute;

 published

 property StopLocation: LongInt read FStopLocation write FStopLoca-

tion;

 end;

type

 TrbMakeMySample = class(TrbMake)

 private

 FStopLocation: LongInt;

 procedure SetStopLocation(const Value: LongInt);

 procedure SetCounterLimit(const Value: LongInt);

 public

 procedure Execute;

 published

Rubicon Reference

72 Customization

 property CounterLimit : LongInt read FCounterLimit write SetCounter-

Limit;

 property StopLocation: LongInt read FStopLocation write SetStopLoca-

tion;

 end;

procedure Register;

implementation

uses Classes, rbBase, rbConst, rbFile, rbUpdate;

{ TrbAppendMySample }

procedure TrbAppendMySample.Execute;

var SaveMinIndex : LongInt;

begin

 CheckNil(Cache,rbeNilCache);

 CheckNil(TextLink,rbeNilText);

 CheckNil(WordsLink,rbeNilWords);

{TextLink.Open;}

 WordsLink.ResetCounters;

{ReadProperties;}

{FStartIndex := (FStartLocation - 1) and $fffffff8 + TextLink.MinIndex

and 7;}

{TextLink.SetIndexRange(FStartIndex,Undefined);}

 State := [esUpdate];

 try

 SaveMinIndex := TextLink.MinIndex;

Customization 73

Rubicon Reference

 FStartIndex := (FStartLocation - SaveMinIndex) and $fffffff8 +

 TextLink.MinIndex;

 if FStartIndex < SaveMinIndex then

 RaiseRubiconError(rbeInvalidParameter);

 { Force TextLink.MaxIndex to be refreshed }

 TextLink.SetIndexRange(FStartIndex,Undefined);

 TextLink.SetIndexRange(FStartIndex,TextLink.MaxIndex);

 Bits.Capacity := TextLink.IndexRange + 1;

 Cache.DataSize := Bits.CopyBufferSize;

 if TextLink.GotoNearestLocation(FStartLocation) then

 begin

 State := State + [esReading];

 try

 Action := uaInsert;

 while not TextLink.EOF and

 ((FStopLocation = 0) or (TextLink.Location <= FStopLocation))

and

 not Aborted do

 begin

 Location := TextLink.Location;

 FCacheCounter := Cache.Counter;

 Process;

 DoAfterBatch;

 TextLink.Next;

 end;

 FAppendBits.Max := TextLink.IndexRange or 7;

 finally

 State := State - [esReading]

Rubicon Reference

74 Customization

 end;

 TextLink.SetIndexRange(SaveMinIndex,TextLink.MaxIndex);

 Bits.Capacity := TextLink.IndexRange + 1;

 ResizeBuffer(Bits.CompressBufferSize);

 State := State + [esWriting];

 try

 Cache.Iterate(iAppend,False,True);

 finally

 FAppendBits.SwitchBack;

 FAppendBits.Max := 0;

 State := State - [esWriting]

 end

 end

 finally

 TextLink.SetIndexRange(Undefined,Undefined);

 State := State - [esUpdate]

 end

end;

{ TrbMakeMySample }

procedure TrbMakeMySample.Execute;

begin

 State := [esMake];

 try

 State := State + [esReading];

 if WordsLink.Segmented and

Customization 75

Rubicon Reference

 (FFirstSegment > 0) then

 TextLink.GotoNearestLocation(TextLink.MinIndex + FFirstSegment * Seg-

mentSize)

 else

 TextLink.Lowest;

 Location := TextLink.Location;

 while not TextLink.EOF and

 ((FStopLocation = 0) or (TextLink.Location <= FStopLocation)) and

 not Aborted and

 ((FCounterLimit = 0) or (FCounter < FCounterLimit)) and

 (Segment <= FLastSegment) do

 begin

 Inc(FCounter);

 FCacheCounter := Cache.Counter;

 TextLink.Process(Self);

 TextLink.Next;

 {* Update the value of Location/Segment so while loop test is current

*}

 if Segment = FLastSegment then

 Location := TextLink.Location;

end;

 if Cache.Count > 0 then

 Post(True)

 finally

 State := State - [esMake]

 end

end;

procedure TrbMakeMySample.SetCounterLimit(const Value: LongInt);

Rubicon Reference

76 Customization

begin

FCounterLimit := Value;

if Value <> 0 then

FStopLocation := 0;

end;

procedure TrbMakeMySample.SetStopLocation(const Value: LongInt);

begin

FStopLocation := Value;

if Value <> 0 then

FCounterLimit := 0;

end;

procedure Register;

begin

RegisterComponents('ebUtil',[TrbAppendMySample, TrbMakeMySample]);

end;

end.

Program Service 77

Rubicon Reference

PROGRAM SERVICE

This chapter helps you assess and solve technical problems. It provides advice in a question
and answer format, as if our support department were talking with you on the phone.
Read the questions carefully as they should help you quickly diagnose your trouble.

Common Issues with Solutions

Q: I am trying to compile in Delphi XE3 with Rubicon Lite. I am using runtime Packages. I
get this error about a DCP file not being found when I build my project:

Done building project "ExUpSr.dproj" -- FAILED._ Build FAILED._

D:\Program Files\HREFTools\Rubi-

con\RBDemos\demo_m_ado\ExUpSrU.pas(18,18):

error F1026: F1026 File not found: 'rbc40_core_pas_lib.dcp'

Answer: Here is a workaround. You can fix the DCP error with a trick:

Tools > Options, Environment > Delphi > Library.

Make ANY change to the search path, such as delete an invalid path or add a fake path,
regardless of whether that is fake or real. Save.

Project > Build

You may also find that it helps to go in the registry and disable Delphi’s package cache.

Q: I have a paid license. I ran the installer but I do not have any Rubicon\Source files nor
any Packages!

Re-run the Setup program and be very careful when you get to the screen with all the
checkmarks (selecting components of the product). The first option is the most important
one - Source - and can be accidentally unchecked, leading to the condition you describe.

Q: When I try to compile my Rubicon packages using my customized DCCDPK BAT file, I
find a fatal error in the resulting LOG file. The message, “Fatal: Required package '___' not
found,” talks about a package than I have on disk! Why is that file not found by the com-
piler?

Rubicon Reference

78 Program Service

First, check your configuration in ZMAdmin and make sure that there is no trailing slash at
the end of your path.

Second, make sure that have included the path to BOTH the DCP and BPL files for the
package in question.

Third, if you suspect a typo but cannot see it, confirm the filenames by running
Hunt4Packages (use the shortcut under Start > Programs > HREF Tools > Rubicon >
Hunt for Packages).

• Home directory
this is filled in for you. It should be the Rubicon\Packages folder.

• Package to find
you should paste in the name of the package mentioned in the fatal error.

• Compiler
select the compiler

Click [Search Now] and you should end up with a report listing all relevant details. Copy
that report into a text editor such as Notepad for easier searching. Now you can quickly
confirm the location of the package file.

Program Service 79

Rubicon Reference

If the report confirms that the package is on disk, the solution is either (a) customize the
moresrc setting in the DCCDPK BAT file (only if you have discovered an error - please tell
technical support) or (b) use shorter paths for the compiler and/or the database bridge. For
example, instead of installing to c:\Program Files\Embarcadero\RAD Studio\9.0\ you could
install to c:\Apps\Embarcadero\Delphi\XE2\ and for a database bridge, you could install to
c:\vcl\nexus\ . You could install Rubicon to c:\vcl\rbc\. Avoid spaces in your paths when-
ever possible.

Q: Can I reduce the size of Words table by setting WordFieldSize to a lower value?

Yes, but you run the risk of increasing the number of truncated words, which leads to false
matches during updates and ambiguous search results.

Q: How can I limit a dictionary build to a maximum amount of RAM?

In order to conserve RAM, be sure to set CacheMemoryLimit to the desired value. Then in
the TextLink.AfterProcess event handler, include code that calls rbMake1.Abort when the
maximum amount of RAM is exceeded.

Q: When using the query based links, what should be included in the SQL property?

Nothing. Rubicon will manage the SQL property.

Q: How can I use TrbSearch as a filter for my DataSet?

In Delphi 2.0 or higher and C++ Builder, you may simply define an OnFilterRecord event
handler and test whether the current record matches the search criteria by calling
RbSearch1Matches.

Q: MemoryUsage includes what kinds of memory?

It is primarily made up of the memory used to cache the indexes. If AltMemMgr is True, it
also includes any memory in the memory pool. Some internal buffers are also included. It
does not include the memory used by the container classes themselves, various TLists, and
other ancillary data structures.

Q: The blob portion of the Words seems excessively large

Check to see if the table type being used has a default or minimum blob size. If so, see if
the default size can be reduced to 32 or 64 bytes. For dBase tables, the MEMO FILE
BLOCK SIZE is often set to 1024 or 2048 in BDEAdmin.exe, which is excessively high.

Rubicon Reference

80 Program Service

Q: My application seems to stall while using TrbUpdate. Can this be avoided?

If you have set DelayedWrites to True, TrbUpdate will write records to disk when the cache
is full. You may use the OnWrite event to do some processing while the cache is being
compressed. You should not interrupt this process. Calls to WriteCache or FlushCache
may also cause delays. Here, you may abort the process and then resume it later.

Q: (With NexusDB) If I use a pre-made Words table that was previously working with
Rubicon v2 + NexusDB v2, then I get the following errors:

Using TRBNXTable:
Service failed on execute: NexusDB: rbNXReqWords: Could not find object. [$2208/8712]

Using TnxTable:
Service failed on execute: NexusDB: rbNXReqWords2: Could not find object.
[$2208/8712]

Those are specifically in a Windows service that runs in the background and checks if any
updates need to be done. If I even try to add new words to the database, I get the exact
same error, "Could not find object. [$2208/8712]".

A: The "Could not find object" error that is being thrown is because of the name of the
stream used in the NexusDB Words table (reference rbnx.pas). Version 2 of Rubicon used
"RUBICON2" as the name of the stream. Rubicon 4 uses “RUBICON4” instead. To solve
this, you have to manually modify the name of the stream in the Words table from
"RUBICON2" to "RUBICON4" using the NexusDB Enterprise Manager application.

Troubleshooting

Q: What does the ‘Decompress buffer too small’ error mean?

The error means that there was not enough memory allocated to decompress an index. The
allocation of this memory is handled internally and is not affected by MemoryLimit or the
amount of installed memory on the computer. This condition is usually caused by one of
the following:

1 When updates and searches are occurring simultaneously, the search application may
not have allocated enough memory to hold the word indexes (which may have grown in
size). In this case, see the code in Button1Click in RBDemos\demo_b_ttable\ExSrch.dpr
which handles this exception.

2 If the application is placing ranges or filters on the Text table, this will cause the error.
In this case, call rbUpdate1.Initialize or rbSearch1.Initialize before setting any filters or

Program Service 81

Rubicon Reference

ranges. Also, read the "Filters and Ranges" section in the documentation.

3 This error may result from records being deleted from the Text table without Rubicon
being notified. Rebuilding the Words table should solve the problem.

4 This error may result when different settings (e.g. SegmentSize) are used for building
versus appending to the Words table.

Q: The first search takes longer than subsequent searches

When the first search is executed, TrbSearch needs to initialize itself as well as perform the
search. You may minimize the impact of this by performing the initialization earlier by
calling Initialize. If you are working with SQL tables, you will want to read the section
Working with SQL Tables.

Q: A “Dataset not supported” error is raised when using a TClientDataSet

Need to include rbCDS in the uses statement.

Q: Words seem to be missing or incorrectly associated in the dictionary

If the length of the words in question exceeds the WordFieldSize property, increase Word-
FieldSize and rebuild the dictionary.

Q: A match table record has a rank of zero.

If RankMode is rmPercent, it is possible that the rank value is being rounded to zero. This
may be checked by changing the RankMode to rmCount and rerun the search.

Also check to see if the word or words that should have been ranked have a length that
exceeds the WordFieldSize property. Typically this occurs when using a wildcard in a
search. For instance, a search for WaitFor* might locate a record containing WaitForMulti-
pleObjects, but the word found in the index and listed in the MatchingWords property is
WaitForMultipleObjects. The solution here is to increase the value of WordFieldSize.

Q: Searches are not finding the correct records

If a TrbTextBDELink is being used with a blank IndexFieldName, then a record may have
been inserted or deleted in the middle of the table. This will corrupt all the Words table
index values and does not generate an error unless the change was made when TrbUpdate
was running. Otherwise, check for table corruption and use the Verify utility to check the
Words table.

Rubicon Reference

82 Program Service

Q: A slOr search on ‘*’ followed by a slNot search should return zero matches, but doesn’t

What is being returned are the gaps between index values. Since these records don’t really
exist, a call to TrbMatchMaker.Execute will return an empty table. The correct way to per-
form the above search is to follow the slOr search followed by a slNot NarrowSearch.

Q: All the values for WordCount and BlobSize are zero in my Words table

This should only occur when using TrbCustomWordsBDELink components. This indicates
that the database format of Words table does not support 32 bit integers. Check to be sure
that the dbiWrite property is set to False and rebuild the Words table.

Q: Words at the end of memos are not indexed

16 bit applications are limited to memo lengths of 64kb. If possible, compile your applica-
tion with Delphi 2 or higher.

Q: The Matches method does not seem to be working

Matches returns a value that indicates whether the current record in the DataSet meets the
search criteria. You may have to call UpdateCursorPos before calling Matches. In addition,
when using a TrbTextBDELink with a blank IndexFieldName and Matches is called from
within a filter, it may not be possible to synchronize the DataSet to the physical record
number.

Q: Number of Words table records varies with table type

Normally, the number of unique words should not vary with table type. Differences can
arise when the source table(s) contain nonstandard characters that are treated differently by
the table types, and therefore result in key violations that cause a word to be excluded from
the table. For instance, one table may interpret Canada and Cañada as two different words,
the other may treat them as the same (and thus one would be excluded because of a key
violation).

Q: Processing TrbMake.Execute slows down exponentially

There may be insufficient memory to complete the operation. Check the value of the
cache’s MemoryLimit property. You may need to increase it from the default value of 4mb
(advise setting it to the amount of physical memory installed minus 4 to 8 mb for Win9x,
half of physical memory for NT). If using Delphi 2 or higher, you may have run into the
memory fragmentation bug. Set the AltMemMgr property to True. See Memory Fragmen-
tation for more details.

Program Service 83

Rubicon Reference

Q: Trouble installing the components; conflict with prior version

If you have installed a prior or trial run version of Rubicon, make sure you have deleted all
the old files, especially the dcu/dpl/bpl files. You may want to confirm this by using the
Windows 9x or NT 4.0 find utility and search for Rubicon files.

Human Assistance

Do you need further assistance?
Contact HREF Tools Corp. technical support via our newsgroups. You will need to
authenticate; generate an account for yourself at http://www.href.com/newsgroups. The
newsgroups to subscribe to are:

hreftools.public.announce
hreftools.public.rubicon.install
hreftools.public.rubicon.support

You can also contact Technical Support using the form at
http://www.href.com/contact but we prefer that you ask in the newsgroups because that
helps build a public knowledgebase. Newsgroup content is searchable at
http://www.CodeNewsFast.com.

Rubicon Reference

84 Program Service

End Use 85

Rubicon Reference

END USE

This section of the documentation covers performing specific occupational tasks and activ-
ities, peculiar to the customers' profession or assignment.

We present a series of real-world solutions that our support department has collected.

Query Based Links

There are two broad groups of Text and Words links: one uses TTable-like components
while the other uses TQuery-like components. As a general rule, the first group is best
applied to local tables, while the second is best suited for SQL tables.

When using query based links, Rubicon will manage the SQL property, so there is no need
to provide any SQL statements.

Query based links behave much the same way as table based links except when it comes to
performing wildcard searches. Table based links simply perform a scan, while query based
links execute a LIKE query. The difference is that the table scan can be easily aborted,
while the LIKE query may not be aborted.

In order to avoid an excessively long query wildcard search, the app may use the OnPre-
viewWord event to catch vague wildcard searches (e.g. a*). Another approach is to check
whether the query component (e.g. TQuery, TIBQuery, etc.) supports a max rows feature.
For BDE applications, the dbiSetProp procedure can be used to set the curMAXROWS set-
ting in the TQuery.PrepareCursor method.

Using TrbServerUpdate and TrbSearch Simultaneously

When using TrbSearch while other clients are updating the Text/Words via TrbClientUp-
date and TrbServerUpdate, it is possible that the Words will not be in sync with Text as it
takes some time for all the changes to be processed. This lag will vary depending on the
volume of transactions and "word density" (the number of words changed per transaction
-- an edit may have very few changes while an add or a delete changes every word), the
bandwidth of the network, hardware, etc.

If your app requires that users be able to search on the most recent changes then:

Set the rbSearch1.Cache to nil
Do not allow searches to be widened or narrowed as old search results may be out of

Rubicon Reference

86 End Use

date
Use the IsCurrent property to determine when the Words is in sync with the Text
If you app does not require access to the most recent changes then
rbSearch1.Cache may be used
Probably want to periodically call rbSearch1FlushCache

Working with Link, Lookup, or Normalized Tables

Performing a text search on a set of linked tables generally requires searching a field in a
lookup table, grabbing the index value, returning to the master table, changing the index,
finding the index value, etc., etc. Now try performing a complex multi-field search!

Rubicon eliminates this complexity by allowing you to build the Words with a DataSet that
contains all the lookups. Just use the Delphi field editor to define the relationships and
process the table with TrbMake, TrbSearch, and/or TrbUpdate. Now you can search for any
word in any field regardless of whether the field is in the master table or in a detail table.

Working with SQL Tables

Working with SQL tables differs with local tables in only two respects: the choice of drivers
and the time required to calculate the IndexRange.

Local table are almost always accessed with TTable (or TTable equivalent) based compo-
nents. While this approach also works with SQL tables, performance usually benefits from
switching to TQuery based components.

All the core Rubicon components need to calculate the IndexRange (the difference between
the maximum and minimum locations) before they can perform any work so that they can
determine how much memory is needed to hold an individual index. On local tables this
simply requires calling TTable.First and TTable.Last, and reading the index field values.
The TQuery based components do not use that approach. Instead, they execute a MAX()
and MIN() query. For very large tables, this process may be lengthy. In addition, if the
field is populated based on a generator (or equivalent) value, it would be much faster to
simply query the generator. This can be done by using the OnMaxIndex and OnMinIndex
events and supplying the appropriate values.

Rubicon 1: MinOrdIndex and SourceRange properties have been replaced by OnMaxIndex
and OnMinIndex events.

Warning: the same OnMaxIndex and OnMinIndex events should be used for all Rubicon
components that access the Text, otherwise there is a risk that the IndexRange will be cal-
culated differently, leading to index corruption.

End Use 87

Rubicon Reference

Using TrbSearch in Conjunction with a TQuery

A TQuery may be used in conjunction with TrbSearch. The strength of TrbSearch is its full
text search capabilities. However, it is unable to search for text and limit the results to a
certain date or numerical range. In order to do this, you simply need to perform the text
portion of the search with TrbSearch, create a match table with TrbMatchMaker, and then
execute a TQuery against the match table.

If you use this approach, you may wish to index the match table before executing the
TQuery in order to improve performance. Remember that all the TrbSearch methods and
properties will be unaware of the results of the TQuery (e.g. MatchCount will report the
number of matching records of the text portion of the search, not the number of records in
the TQuery).

Custom Ordering of Search Results

In some instances it may be desirable to order search results in a certain order, but there
may not be enough time to rank or sort the match results (e.g. a web app performing
numerous searches per minute).

Unless ranked, search results are returned in IndexFieldName order, lowest to highest. If
the application is searching a customer table that is indexed on CustNo, and CustNo
roughly corresponds to how long a person or company has been a customer (e.g. the lower
the CustNo, the longer they have been a customer), then the oldest customers will be dis-
played first and the most recent customers shown last. To reverse the order, the application
could just call FindLast and work backwards through the matching locations as it dis-
played the results.

But what if the matching records needed to be ordered by the customer’s dollar volume
over the past year? Without doing extra processing as the search was performed, the only
alternative is to add a new index to the Text table and populate with values that correspond
to each customer’s sales volume, then use this index as the IndexFieldName. Assuming
that the customer with the highest sales volume was given and index value of 1, the second
highest 2, and so on, search results will always be displayed in sales volume order.

The disadvantage of this approach is that when the ranking by sales volume changes, the
index has to be regenerated and the table re-indexed.

Web Applications

Rubicon may be used in web applications in a similar fashion to single user apps. Web
search applications do vary in two respects: there are more likely to be multiple versions of
the app running simultaneously and web apps often need to save the state of the surfer.

When running multiple copies of a Rubicon search app, each copy is going to have their
own cache, so the host computer should have enough physical memory available for all the

Rubicon Reference

88 End Use

apps. If all the apps are searching the same table, then the caches could be shared between
them.

Saving the surfer’s state is usually the responsibility of the web framework being used.
These frameworks often provide a mechanism for saving standard data types. To save the
state of TrbSearch, the app will have to save at least the SearchFor property and the match-
ing locations (unless the search is re-executed). Since SearchFor is a string, most frame-
works can readily handle saving this property, whereas saving the matching locations
requires a bit more planning.

The easiest way to save the matching locations is to use the TrbSearch.MatchBits.AsText
property. This will return the matching bits as a compressed UUEncoded string. To reset
the matching locations, just assign the string back to AsText. MatchBits also supports a
CommaText property which returns the matching locations as a string of comma delimited
locations. Because CommaText tends to return much longer strings, using AsText is the
preferred approach.

International Character Issues

International characters require some special consideration. When dealing with interna-
tional characters, the sort order and character set of the Words table is very important.

An excellent overview of character sets as used in Firebird SQL is online here:
http://www.destructor.de/firebird/charsets.htm.

In the Borland Database Engine, sorting and character set are controlled by the table’s lan-
guage driver. Regardless of which database you use, sorting international content is tricky.
Using the BDE as an example, depending on the language driver, a table may be sorted as
follows

The terms used to described these sort orders vary, but they will be referred to here as Intl
and AscII. Both sort orders are compatible with Rubicon, but they do affect the search
results in many cases.

The table’s character set often determines how characters #128 and above appear in the
table. In some instances, characters #128 and above are converted into another character.
To check for this, open the Words table after it has been built and make sure that interna-

International AscII

RESUME RESUME

RÉSUMÉ REVIEW

REVIEW RINK

RINK RÉSUMÉ

End Use 89

Rubicon Reference

tional characters appear correctly in the table. If international characters have been con-
verted, you must select another character set or language driver.

Regardless of the sort order, using Rubicon’s default configuration, a search for a specific
word will find that word. For instance, if resume and résumé are in the text, then a search
for resume will find resume, and a search for résumé will find résumé.

While it is always preferable that the user enter their search using international characters
(if any), this may not always be the case. In the previous example, the user may enter
resume, but really be looking for résumé. Since Rubicon is not telepathic, the best it can
do is return both words (if the user enters résumé, it will return resume as well). In order
to enable this behavior, the sort order must be Intl and the TrbSearch International prop-
erty must be set to True.

The International property will also affect how wildcard searches are conducted. When
False, a search for re* would return resume, and review while a search for ré* would only
return résumé. When International is set to True, either search would return all three
words.

When the International property is set, Rubicon normalizes the words internally. If the
search is for ré*, it would be normalized to RE*. Likewise, the word RÉSUMÉ (it is already
uppercase in the Words table) would be normalized to RESUME. The normalization pro-
cess is handled by the Normalize procedure in rbUtils.pas. Some character sets may
require custom normalization, and this can be implemented by reinitializing the Normal-
Table.

Searching External Files

Data outside of a database – typically files on a hard disk drive – may be indexed and
searched if a database can be created that references this 'external' data and a routine is sup-
plied that can read and parse the data (i.e. remove any formatting codes).

The ExHTML.dpr application in the Rubicon\RBDemos\demo_b_ttable subdirectory
demonstrates how to do this for HTML documents. See the comments in ExHTMLU.pas
for details. ExRTF.dpr is a very similar program that works with text and RTF files.

The approach used in the application is to create a table whose records reference all the
files to be included in the search. If the files are small, it may be easiest to simply copy the
file into a memo field and then use the Rubicon components in a normal fashion. Usually,
it is better just to reference the file by filename (including drive and path). The remainder
of this discussion assumes the latter.

Rubicon Reference

90 End Use

Once a table of filenames has been created and populated, it needs to be processed by
Rubicon. In the TrbCustomTextLink component, the field name containing the filename is
added to the FieldNames property. Of course, the field itself does not contain the text that
needs to be indexed, so an OnProcessField event needs to be supplied that reads and
parses the file. For a text file, the event would look something like:

procedure TForm1.Form1ProcessField(Sender: TObject; Engine : TrbEngine;

Field: TField);

var List : TStrings;

begin

List := TStringList.Create;

try

{* Field contains the filename *}

List.LoadFromFile(Field.AsString);

Engine.ProcessList(List,True);

finally

List.Free

end

end;

Warning: Any time an OnProcessField event is used, it must be connected to all TexLinks
that access the text in order to insure consistent treatment of the text.

When the table is processed with TrbMake each record will be indexed with the words con-
tained in the external file.

As the files change, the database will have to be updated. If the size of the database is
small, it is probably best to simply rebuild it from scratch. However, this may not be prac-
tical for large databases. Updating presents a problem because unlike a conventional data-
base, TrbUpdate will not be notified when a file changes, and thus it cannot keep track of
which words were added/deleted to a record/file. This forces TrbUpdate to assume that all
the words in the previous version of the file were deleted and all the current words in the
file were added.

Fortunately, the routine ClearLocations makes this complicated process pretty fast and
straightforward. All the application needs to do is identify which files were deleted or
changed, pass this information to ClearLocations. The method will then scan though all
the words and indexes in Words and remove any references to the deleted or changed loca-
tions. All that is left to do is process files that have changed or been added with BatchAdd.

End Use 91

Rubicon Reference

Converting Words

Rubicon includes a Convert method and a Convert utility that may used to change the
structure of the Words. This is most useful for changing the values of BlobFieldSize, Bytes-
FieldSize, CharFieldSize, and SegmentSize. You may also convert the Words table from the
segmented structure to a non-segmented structure (to do this, set the SegmentSize to zero),
and visa versa.

Changing the values of BlobFieldSize, BytesFieldSize, or CharFieldSize changes the
amount of index information held in the record structure versus blob storage. Generally, if
the entire index can be stored in the record structure, access time for writing and reading
the index is reduced because there is no need to read the blob data. This improves perfor-
mance for index creation, updating, and searching. It may also reduce the overall size of
Words table, especially if there is a large amount of overhead for blob storage.

Changing the value of SegmentSize can change the number of segments in the Words table.
When the number of segments is reduced, the overall size of the Words table will also be
reduced and search performance will improve slightly (but probably not enough to be
noticed). However, fewer segments will degrade update performance, so the tradeoff may
not be worthwhile. Increasing the number of segments by decreasing SegmentSize has the
opposite effect: table size will increase but update performance will improve.

Changing the SegmentSize to zero converts a segmented Words table to the non-segmented
structure. This will reduce the Words table file size by 20-30% and slightly improve search
performance, but updates should not be performed on the converted table. Conversion
makes sense when the Text is relatively static and storage space is at a premium.

A non-segmented Words table may be upsized to the segmented architecture by changing
the SegmentSize from zero to a positive value.

All the conversions discussed in this section will have no affect on the memory resources
required to perform a search. Changes that reduce the Words table size will reduce the
amount of data read from disk, network, or server.

Rubicon Reference

92 End Use

Searching Short and Omitted Words

For searches using slAnd, slOr, and slNot SearchLogic, words with fewer than Min-
WordLen characters and words in the OmitList are ignored. If MinWordLen is 4, then a
search for “red carpet” would be the equivalent to searching for “carpet”. Since Rubicon
cannot tell whether “red” appears in the matching records, the word “red” is not included
in MatchingWords.

For slPhrase and slNear searches, all the words entered in the search are used regardless of
their length or whether they are in the OmitList. Since Rubicon does check to see that all
the words are present, all the words will appear in MatchingWords.

When words rejected by an OnAcceptWord event are used in a search, the search will fail.
If OnAcceptWord rejected the word “only”, then any search except slLike would find zero
matches, including slPhrase and slNear. Since OnAcceptWord is geared toward rejecting
noise words, the chances of one of these words being used in a search are low. However, if
you wish to have a word rejected by OnAcceptWord treated the same way as words
rejected by MinWordLen and OmitList, then test each word in OnPreviewWord, and set
the length of a rejected word to zero.

Searching without a Text DataSet

Under some circumstances it may be desirable to be able to perform searches, but not actu-
ally connect TrbSearch to the Text dataset. To do this, TrbSearch must still be connected to
a TrbTextDataSetLink descendent, but the DataSet property (usually Table or Query) is left
nil. The OnMinIndex and OnMaxIndex events must be used so that TrbSearch can calcu-
late the size of the indexes. Under this configuration, no proximity searches may be per-
formed nor may the SubFieldNames property be used else an rbeInvalidTextDataSet error
is raised.

An example use-case for this feature follows.

In some cases, stepping thru results can be slow because for each step a query is executed
(select * (or just the indexed field) from TextTable where ref = x) and this may give you
only a small part of what you really need. For example, you may need to join all the result-
ing records to other tables before displaying them to the user and/or sequence the results.
Thus what you can do is step thru the results and insert all the keys into a global temporary
table (do all the insertions within a transaction for speed), then join that temp table to all
the other relevant tables with an order by clause. This can be orders of magnitude faster.

There is a search results retrieval method which can be used to quickly obtain the list of
matching keys for this sort of solution: rbSearch.MatchingLocations.

End Use 93

Rubicon Reference

Usage example:

var

list: TList;

int: Integer;

begin

rbSearch.Execute;

list := nil;

try

list := TList.Create;

rbSearch.MatchingLocations(list);

int := Integer(list[0]);

finally

FreeAndNil(list);

end;

end;

Memory Issues

The only Rubicon component that uses a significant amount of memory is TrbCache. The
amount of memory it uses can, in most cases, be capped by using the MemoryLimit prop-
erty.

TrbCache can be connected to TrbMake, TrbUpdate, TrbServerUpdate, and TrbSearch. Of
these, only TrbMake requires a cache be assigned (although it is recommended for the
other components) because it builds indexes entirely in-memory. As a result, TrbMake is
the most memory intensive Rubicon component. The other core components use rela-
tively little memory, however performance will benefit if additional memory is made avail-
able to cache indexes.

TrbMake Memory Requirements

The amount of cache memory required to build the Words is approximately:

of unique words * index size * (1 - compression rate) / 8

With non-segmented Words, index size is the IndexRange (the difference between the low-
est and highest location values). When segmentation is used, the index size is the lesser of
the IndexRange or the SegmentSize.

Applying the formula to a table composed of one million records and 5,000 unique words
using an efficient index and a 97% compression rate would require 18.75mb of virtual
memory.

Since the amount of virtual memory available is not always clear, TrbMake will keep con-
suming memory as it needs it until it runs out. If you want to set an absolute limit on the

Rubicon Reference

94 End Use

amount of memory available to the component, add an AfterProcess event handler to mon-
itor MemoryUsage and abort the process once the memory threshold has been exceeded.

32 Bit Memory Fragmentation

Rubicon caches and compresses indexes in memory in order to minimize disk/network
activity. In doing so, it is frequently disposing large blocks of memory for small ones, or
visa versa. Unfortunately, this pattern of behavior is the Achilles' heel of the 32 bit mem-
ory suballocator and eventually leads to massive memory fragmentation which will grind
the application (but not the system) to a halt.

Fragmentation usually does not become a problem unless the Text has more than 50,000
locations and 15,000 unique words. This is an approximate threshold, and will vary with
the amount RAM devoted to caching. The problem is most likely to affect TrbMake since it
goes through the most compress and decompress cycles during execution. TrbUpdate may
be affected if a very large number of records are updated during execution and caching is
enabled. TrbSearch should not be affected even if caching is enabled since the number or
records cached is likely to be very small.

Tools such as MemorySleuth 1.x do not catch this bug. The Windows 9x System Monitor
or NT Task Manager will. You may use one of these tools to determine whether your appli-
cation is being affected by fragmentation. If the tool shows memory use increasing even
after the component has reached its MemoryLimit and the performance of the application
is degrading, then fragmentation is the likely cause.

Fragmentation does not lead to a memory leak. All memory used by the components are
returned to the system when they are freed or done processing.

Rubicon provides an alternative memory manager which works around this bug. It uses an
algorithm that is optimized to work with the TrbMake pattern of memory use. To use this
option, the AltMemMgr compiler directive in RBDEFINE.INC must be enabled and the
AltMemMgr property must be set to True. This option does not replace the existing mem-
ory manager (i.e. it does not call SetMemoryManager), but rather supplements GetMem
and FreeMem.

Unlike TrbMake, TrbUpdate has a much more unpredictable pattern of memory use so it is
more difficult to assure that the alternative memory manager will not also defragment
memory. If you are processing a large number of changes to a table and are using caching,
then you may wish to call FlushCache periodically.

The alternative memory manager eliminates the fragmentation problem by creating a list of
pointers available for reuse (a memory pool). When execution begins, this list is empty
and requests for memory are passed to GetMem. As execution proceeds, any memory that
is released is saved in the memory pool. Subsequent requests for memory first check the
memory pool to see if there is a pointer available of the appropriate size. If one exists, it is
used, otherwise GetMem is called.

When the alternative memory manager is used, MemoryUsage may exceed MemoryLimit

End Use 95

Rubicon Reference

by a large amount. MemoryUsage is largely made up of the memory used to hold data
structures and the memory pool. The MemoryLimit is compared to only the portion of
MemoryUsage that is actually holding data, and thus the memory pool portion is excluded.

Rubicon Reference

96 End Use

	Cover
	Contents
	Evaluation
	Introduction
	How Fast Is It?
	Architecture
	Searching
	Ranking Search Results
	Databases and Tables
	Utility Programs
	Setup Programs
	FREE Rubicon Editions and Their Limits
	Rubicon End User License Agreement
	Glossary

	Planning
	System Requirements
	Common Questions
	Paradox and dBase Options
	Component Hierarcy

	Installation
	Download
	Unusual Features of the Installer
	Running Setup
	Extra Sample Database Files
	Third Party Drivers
	C++ Builder Package Installation
	Package Naming Conventions
	Demo/Example Programs

	Resource Definition
	Hint for Evaluation and Lite Editions
	Non-English Text; UTF-8; Unicode
	Compiling Third-Party Data Bridges
	Download Model Files (JPGs)
	Download Borland Database Engine
	Rubicon Demos/Examples Use Shared Config,Yet...
	dbExpress with Interbase 7, BlackFish

	Operation
	How to Compile with Free Rubicon Components
	How to Make
	How to Update (Single User)
	How to Update (Multi User)
	Server Application
	How to Search
	How to Use a TClientDataSet
	How to Search Multiple Tables
	Working with Huge Tables
	Indexing

	Customization
	Optional Compiler Directives
	Example: Customizing Append and Make Components

	Program Service
	Common Issues with Solutions
	Troubleshooting
	Human Assistance

	End Use
	Query Based Links
	Using TrbServerUpdate and TrbSearch Simultaneously
	Working with Link, Lookup, or Normalized Tables
	Working with SQL Tables
	Web Applications
	International Character Issues
	Searching External Files
	Converting Words
	Searching Short and Omitted Words
	Searching without a Text DataSet
	Memory Issues

